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Chapter 1

Introduction

The Internet is constantly becoming more important for our communicative life.

There is no traditional communication technology or medium that does not have

its counterpart based on the Internet. Whether television, cinema, radio, telephone,

letters, or print media – like books, magazines and most importantly newspapers –

they all have partially or even completely been replaced by an Internet based tech-

nology for an increasing number of people. Additionally, new Internet applications

that have not even been possible or affordable with the former technologies, such as

instant messaging, weblogs and all the other »user generated content«, for instance,

are quickly becoming an important part of our social interactions and information

sources.

Hence, with every day the Internet becomes more and more important and irre-

placeable. The more we depend on it, the more important its reliable and sufficient

functioning becomes. Because of the decentralized organization and the »best

effort« principle of the Internet, it becomes a very difficult task to achieve reliability.

One of the most important instrument to make the Internet more reliable is network

monitoring. It gives us an eye to see »what is going on« in the network, that is,

how good the performance is, how the utilization is developing, when hardware

upgrades might be necessary, where the possible weak points are, and if abusive

or security relevant events are appearing, to name a few examples. Besides that,

monitoring is essential for any usage based accounting. The main information

source of every monitoring system are measurements, especially network traffic

measurements. Therefore, a good traffic measurement infrastructure is essential for

all professional network operators.
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Figure 1.1: Diagram of open issues of flow-based network measurements and their
relation to the solutions presented in this work.

In this dissertation, we1 will focus on problem solutions and improvements for

flow-based network traffic measurement infrastructures.

1.1 Challenges

This work mainly addresses challenges of network traffic measurements that can

be categorized into two areas: the management of measurement data and the

measurement of application layer information. Figure 1.1 gives an overview of the

relation between open issues in current network traffic measurement technologies

and the contributions presented in this dissertation.

1All the original work presented in this dissertation has been done by me, the author of this
dissertation. However, I was always part of research groups and received helpful advices and
support. Hence, the work of this dissertation has been published in papers with additional
co-authors, and I will use first person plural throughout this dissertation referring to all of them.
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1.1.1 Measurement Data Management

In general, there are two conflicting demands when creating network traffic mea-

surements. On one hand, the detail of information about the observed traffic

should be as high as possible. The extreme approach for achieving this would

be to store the complete traffic or at least the complete headers of every packet,

which is only feasible in very specific situations. On the other hand, the overhead

induced by the measurement for the hardware and network links and the size of

storage devices should be minimal in order to minimize performance impairments

and costs. Therefore, the goal is to optimize the extraction of important informa-

tion from the traffic in a concise way that is a good trade-off between detail and

effort.

One approach in this direction is the very popular concept of flow profiling, which

combines packets with the same properties into flows. This already produces

a flexible compact traffic digest that can serve for many different applications.

However, the rapidly increasing network speeds still lead to huge amounts of flow

data, if a detail level for usual applications has to be met.

Because of these large amounts of data, it is a main challenge to build network

traffic measurement infrastructures which are still feasible and scaleable. Likewise,

it is important for some applications to build solutions for long-term archiving

of measured data for later reference that only need reasonable amounts of data

storage. A third problem comes with the vast amount and complexity of the data:

a human being is not able to directly grasp it. So, in order to make use of the data,

it is necessary to process, analyze and display it in a way a human observer can

handle.

1.1.2 Application Layer Measurements

Another open issue is the lack of solutions for measuring packet properties that

have to be extracted from the application layer. For many situations this necessary.

Virtual servers, which are very common for WWW as well as e-mail, run multiple

server instances on a single IP address and are only distinguished by application
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layer parameters. Even more importantly, various types of overlay networks are

evolving in the Internet, which build their own topology on top of the transport

layer, for example Virtual-Private-Networks (VPN), peer-to-peer networks, Voice-over-

IP, distributed content delivery networks, and so on. In order to support the

monitoring of such servers and network structures, it is necessary to extend the

technologies of network traffic measurements to the control plane of the according

application layer protocols.

1.2 Contributions

This dissertation consists of a collection of solutions and improvements for the

aforementioned challenges as shown in figure 1.1.

For the analysis and presentation of flow data the software tool FloX has been

developed, which is designed to help an investigator interactively examine the

inner structure of special events – especially high traffic peaks – with a »drill-down«

approach. It enables the human observer to handle large amounts of measured

data and identify the properties of the significant traffic.

The main approach to improve the scalability of distributed traffic measurement

technologies is the use of mediators, entities that distribute the load generated by

the processing of the measurement data. One of their tasks is to protect central

data collectors from getting overloaded by reducing the amount of data that is

being forwarded to them. Hence, mediators benefit from methods to further reduce

the data by separating important from less important information. The same is

true for long-term repositories of traffic data, because such reduction methods can

optimize their cost-benefit ratio. Mouse Trapping is an attempt of such a reduction

method. It exploits the fact that the large flows alone already supply sufficient

information for most applications, because they represent the majority of the

traffic.

It is worth noting that both FloX and Mouse Trapping are based on the analysis of

flow sizes and focusing on large flows.
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To include the measurement of packet properties that derive from the applica-

tion layer, it is necessary to extend the concepts and technologies of the current

network traffic measurements, which originally only support data extracted from

the link layer up to the transport layer. Since modern flow data concepts such

as in the IPFIX standard are extensible by design, this is possible in a consistent

manner. In this dissertation, we will describe the design and definition of SIPFIX,

an application layer extension based on IPFIX for one of the most important appli-

cations that builds an overlay network: Voice-over-IP networks based on the SIP

protocol.

1.3 Outline

This dissertation is organized as follows: In chapter 2 we will give a condensed

review of the concepts and technologies currently in use for network traffic mea-

surements. Subjects that are important for later chapters will be emphasized. The

following two chapters will deal with management of measurement data. First,

chapter 3 will describe the concept of Mouse Trapping, a flow data reduction

method, and evaluate its efficiency by a statistical analysis of flow sizes of real traf-

fic data. Then, in chapter 4 the software tool FloX (Flow eXplorer) will be presented

by means of design and functionality. In chapter 5 the distributed monitoring frame-

work for VoIP networks, SIPFIX is specified in detail. After the definition of the key

elements of the scheme, an extensive list of detailed showcase examples will show

its functionality and flexibility. Finally in chapter 6 we will summarize the presented

work and give a short outlook on possible future work.
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Chapter 2

A Review of Network Traffic Measurement

In this chapter we will give a short overview of the different concepts and tech-

nologies of network measurements. First we will look into the basic concept of

active and passive measurements. This will lead us to the various types of typical

measurement data, especially flow profiling, which is one of the most important

passive measurement concepts nowadays and the basis for the following chapters.

Finally, we will look into different technologies and protocols for the transport of

traffic measurement data over the network in order to allow a data collection from

distributed observation points.

2.1 Measurement Methods

2.1.1 Active Measurement

The idea of active network measurement is to inject traffic with known characteristics

into the network of interest in order to measure certain performance metrics (latency,

bandwidth, jitter, ...) or structural attributes (routing tables, router links) of the

observed network segment.

There are very basic active tools, which every network administrator knows from

daily usage: The tool ping measures the round-trip-time to a given node and

traceroute discovers the intermediate nodes (»hops«) and therefore the route to

a given target node.
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An example of a more advanced technique is the active network tomography, which

analyzes the inner characteristics of a network by sending probe packets between

outer end nodes. By examining the delay or loss rates of the probe packets it is

possible to identify problems of single inner network links, to which no direct

connection exists. It is also possible to analyze the topology itself and localize

links and nodes which are used for many different paths and therefore have a high

impact if they fail or congest. [Castro et al. 2004]

The advantage of active measurement is that it does not rely on the existing traffic.

The probe packet characteristics can be freely chosen and therefore are exactly

known. The measurements can be done in a systematic way in terms of time and

packet properties and the results are very accurate for exactly that type of traffic

that has been used as probe packets. Active measurements can also trigger active

reaction of the network infrastructure, as the ping and traceroute commands

show.

A drawback however is that in essence active measurements only allow conclusions

about the probe traffic itself. The extent of how much this traffic represents the real

payload traffic is limited and heavily depends on the specific case. For example,

ping packets are small ICMP packets, which might get handled completely differ-

ently by the network than an RTP video stream, and the results are not necessarily

transferable.

Another drawback is that active measurements always affect the observed network,

since the probe traffic uses network resources itself. Consequently, what is being

observed is never exactly the network as it would behave without the probe

traffic.

2.1.2 Passive Measurement

Passive traffic measurement does not create any additional traffic, but observes the

traffic as it passes one or more observation points. This is done either directly in

the router hardware itself or with dedicated measurement hardware (»probe«), that

is attached to one or more network links and receives a copy of every transmitted
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packet. The former solution is more cost-effective and easier to maintain, but

has the drawback that the router is not only responsible for fulfilling its primary

functionality, but also has to create and manage the measured data. Especially

in modern high-speed networks this is often not feasible and interferes with the

network stability. Therefore, in most cases a dedicated probe hardware is technically

the better solution.

The obvious advantage of the passive approach is that the traffic is observed as it is

and no additional interfering traffic is generated. In contrast to the active approach

using artificial traffic, this is the only method to analyze for what and how the

network is actually being used. But this is also the drawback at the same time,

since the approach cannot gather information about situations as long as they do

not appear. If a certain question is of interest, the only solution is to wait until an

event happens that allows the answering of that question.

Because of the fundamental differences of passive and active measurements, in

general the active approach is mainly used to answer questions like »how does the

network look like and in which status is it currently«, while the passive approach is

mainly used to answer questions like »what happens in the network and for what

is it used«. Of course, there is an overlap of these two areas and there is no clear

distinction, since they heavily depend on each other. This is why most network

monitoring solutions make use of both active and passive measurements to create

an overview of the network by combining the results of each.

This dissertation focuses mainly on the processing and management of data gath-

ered by passive measurements, although the VoIP monitoring framework presented

in chapter 5 also includes the report of performance metrics which are possibly

gathered by active measurement methods.

2.2 Measurement Data Formats

Usually traffic measurement solutions have to serve not only a single but a number

of several purposes, such as
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I giving an overview of the current network performance and status [Manajan

et al. 2001],

I feeding Intrusion Detection Systems,

I archiving usage statistics for billing [Duffield et al. 2001],

I giving long term trends for planning of network upgrades [Feldmann et al.

2001] or efficient routing [Shaikh et al. 1999], and

I providing data for investigation of network problems.

To keep traffic measurements versatile, it is desirable to keep as much information

about the observed traffic as possible. The naïve and extreme approach to keep

a copy of all packet headers or even the whole transfered data – what would be

without doubts the most versatile solution – is in most cases not an option for

obvious reasons.

It is therefore inevitable to extract information from the raw traffic data, keeping

the amount of data relatively small while the information is still usable in a flexible

way. A trade-off has to be found between the conciseness and the flexibility of

the extracted information. And it depends very much on the application and the

specific needs where this trade-off lies.

In the following sections we will describe two important basic concepts of collecting

and storing measurement data, time series and flows, which represent such trade-offs

with different emphases.

2.2.1 Traffic Traces

In some cases it is necessary to take the extreme approach and store the complete

headers of every single packet or even the complete traffic, which is called traffic

traces. This of course generates an extreme amount of raw data and therefore is not

a method used on a regular basis in network monitoring solutions. It is mainly used

for a limited period of time when a special event or problem has to be examined

in-depth. Therefore it is mostly common in the academic field or for special forensic

examinations. Since simply all data is stored, traffic traces provide the maximum

flexibility.



2.2. Measurement Data Formats 11

Traffic traces are typically created with standard PC hardware and software like tcp-

dump [tcpdump] or with specialized hardware-accelerated network measurement

cards, such as those by the DAG project [DAG]. The raw data is usually stored and

distributed in so-called pcap-files.

2.2.2 Time Series

If one-dimensional metrics have to be observed over time, it is useful to record time

series of the relevant values. Therefore the values are continuously recorded for a

series of time intervals. These values can either be directly observed by sampling

or averaging a gauge, or they derive from increasing counters. In the latter case the

discrete derivative with respect to time of the counter is used (counter steps per

time interval) by either taking the difference of the current and the previous counter

values or by resetting the counter to zero after each measurement. For network

monitoring, typical examples of such values are:

I bandwith usage (counter)

I delays and round-trip-times (gauge)

I system load of routers/hosts (gauge)

I events per time (dropped packets, special packets, ...) (counter)

I number of parallel clients/nodes (WLAN, mobile networks, ...) (gauge)

I number of parallel flows/connections (gauge)

An important advantage of time series is that they can be easily displayed as time

graphs, which show the development of the value during a certain time interval.

This is an efficient way for human observers to catch a lot a of information in a

short moment and to get an overview of the situation.

Even several time series can be displayed in a single graph without necessarily

overloading the observer. An example is given in figure 2.1. It shows the network

traffic bandwidth of a number of selected port numbers over time, that is, of all

packets which have the given port number either as source or destination port. The

time series are stacked upon each other, which gives the observer an impression of
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Figure 2.1: Example of time series measurements recorded and displayed with
rrdtool: the transmitted bytes per second for certain ports are shown in a
stacked plot.

the overall traffic and also what ports (and therefore which applications) this traffic

consists of at any given time.

In order to obtain both a fine time resolution and a long time span of recorded data,

it is a common approach to keep several time series in parallel with different time

resolutions. The most recent time period, such as the last minutes or hours, are

available in the finest resolution, while other records with less time granularity can

span over very long time windows like months or even years.

Time series are a very efficient way to store traffic data in many cases, even in more

complex cases like the example above, where the observed traffic is separated in a

number of smaller traffic subgroups. However, the criterion by which the data is
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separated for an independent processing has to be known beforehand. The time

series themselves do not contain any information about the packets, so a separation

afterwards or on-demand is not possible anymore.

On the other hand, every additional separation criterion increases the number

of necessary time series by an factor of the number of possible criterion values.

Therefore, the number of time series increase exponentially with the number of sep-

aration criteria, which is easily becoming inefficient. In typical cases two time series

for incoming and outgoing traffic are created for the traffic of each host and/or each

port. But for more complex and flexible traffic data storage, time series are usually

not appropriate and a more flexible data format is necessary.

2.2.3 Flows

If a more flexible data format than simple time series is needed, the most common

approach to extract and store data about network traffic is the concept of flows. For

flow based measurements all packets are categorized according to a set of certain

packet properties. Which properties belong to such a set can be freely defined

according to the needs. A single flow according to such a definition comprises

all the packets that share the same values for all the defined properties. For each

observed flow, that is, a flow of which packets have been observed, an entry in

a flow table is made. For each flow different measures can be taken separately,

such as the number of bytes, number of packets, number of TCP connections and

time-stamps of the first and last observed packets, for instance.

An architecture based on the concept of traffic flow measurement has been defined

in [RFC 2722] by the Real-Time Flow Measurement (RTFM) Working Group of the

IETF.

A common example for a flow definition is given by the 7-tuple of the following

property fields:

I Source IP address

I Destination IP address
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I Source port (for UDP or TCP)

I Destination port (for UDP or TCP)

I IP protocol

I Ingress interface

I IP Type of Service

It is the standard flow definition initially used by NetFlow [NetFlow], a very success-

ful protocol by Cisco based on the flow concept, which exports measured flow data

from routers to central collectors for storage and analysis. Because of the broad de-

ployment of Cisco hardware in network infrastructures, NetFlow had a strong influ-

ence on the development of flow based network technologies.

But of course a flow definition can also look different, for example a simple

pair

I Source IP address

I Destination IP address

or an even less detailed pair

I Source ASN

I Destination ASN

which defines very coarse flows including all packets coming from and going to

the same Autonomous Systems, represented by the Autonomous System Number

(ASN), and might be an appropriate definition for backbone operators that are not

interested in single end-node resolution.

Modern flow concepts, like IPFIX, which will be described in more detail in

section 2.3.3, are designed to allow a flexible definition of flows. The packet

properties used for the definitions are usually values extracted from packet headers,

but are not necessarily limited to these. They can also derive from the packet

handling, like the value ingress interface in the example above shows, or

from any other characteristic of the packets.
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The observed flows are stored in data tables, together with the measured counters

(usually number of bytes and packets) and time-stamps, as flow records. This is

done in regular intervals, depending on the desired time resolution. Again a

decision has to be made between conciseness (longer time intervals) and the detail

of information. The more often flow records are stored and the shorter the time

intervals are, the more detailed is the information about the dynamics of the traffic.

A single flow record, with only one counter value for its whole time interval, cannot

tell the difference between a bursty and a continuous bandwidth usage, for instance.

However, by using time-stamps for the first and last observed packet of a flow

record, the represented time window can be minimized, which increases the time

accuracy. For the same reasons it is not possible to decide in general if two identical

consecutive flow records represent two »transport sessions« or a single persisting

one.

ip_src ip_dst port_src port_dst proto tos pkts bytes time

192.168.171.139 192.168.27.69 1409 80 6 0 23 1623 2006-06-28 14:45:00
192.168.27.69 192.168.171.139 80 1409 6 0 33 41272 2006-06-28 14:45:00
192.168.163.254 192.168.216.39 234 33491 6 0 1 40 2006-06-28 14:45:00
192.168.202.138 192.168.242.5 80 42811 6 0 8 1692 2006-06-28 14:45:00
192.168.8.100 192.168.27.2 59855 53 17 0 1 59 2006-06-28 14:45:00
192.168.27.2 192.168.8.100 53 59855 17 0 1 158 2006-06-28 14:45:00
192.168.132.155 192.168.27.123 57764 80 6 0 6 620 2006-06-28 14:45:00
192.168.27.123 192.168.132.155 80 57764 6 0 5 1775 2006-06-28 14:45:00
192.168.132.155 192.168.27.123 57765 80 6 0 38 2393 2006-06-28 14:45:00
192.168.27.123 192.168.132.155 80 57765 6 0 66 90691 2006-06-28 14:45:00
192.168.171.139 192.168.27.69 1410 80 6 0 9 950 2006-06-28 14:45:00
192.168.27.69 192.168.171.139 80 1410 6 0 8 6998 2006-06-28 14:45:00
192.168.150.16 192.168.80.73 57021 25 6 0 50 57065 2006-06-28 14:45:00
192.168.80.73 192.168.150.16 25 57021 6 0 44 2825 2006-06-28 14:45:00
192.168.217.76 192.168.110.98 25 42883 6 0 2 88 2006-06-28 14:45:00
192.168.197.95 192.168.80.73 1028 25 6 32 4 260 2006-06-28 14:45:00
192.168.110.98 192.168.217.76 42883 25 6 0 1 77 2006-06-28 14:45:00
192.168.217.2 192.168.33.130 1053 53 17 0 1 69 2006-06-28 14:45:00
192.168.80.12 192.168.110.98 59128 25 6 0 5 300 2006-06-28 14:45:00
192.168.33.130 192.168.217.2 53 1053 17 0 1 120 2006-06-28 14:45:00
192.168.80.73 192.168.166.198 59129 25 6 0 9 471 2006-06-28 14:45:00
192.168.44.95 192.168.80.31 4787 25 6 0 3 128 2006-06-28 14:45:00
192.168.80.31 192.168.44.95 25 4787 6 0 1 48 2006-06-28 14:45:00
192.168.162.206 192.168.216.36 0 0 1 0 6 168 2006-06-28 14:45:00
192.168.216.36 192.168.162.206 0 0 1 0 6 168 2006-06-28 14:45:00

Table 2.1: Examples of flow records with a 6-tuple of property fields, packet and
byte counters and a time-stamp of storage time.

An example of such a set of flow records is given in table 2.1. In this case the flows

are defined by the 6-tuple of the fields
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I Source IP address (ip_src)

I Destination IP address (ip_dst)

I Source port (port_src)

I Destination port (port_dst)

I IP protocol (proto)

I IP Type of Service (tos)

and include the counters

I number of packets (pkts)

I number of bytes (bytes)

as well as a time-stamp for the storage time marking the end of a time slot repre-

sented by each flow record.

A common misunderstanding is that flows are usually not bidirectional, that is

they contain only the packets passing the observation point in one direction. The

packets traveling in the opposite direction have different source and destination

values and therefore belong to a different flow. Concepts exist, though, to combine

the correlated flows into so-called Biflows [RFC 5103].

Also, a flow is generally not synchronized with transport layer sessions. Consecutive

TCP connections with the same flow-relevant property values belong to the same

flow, and can usually not be distinguished. Of course it is possible to include a

property that represents a kind of a »session identifier«, which would separate each

session into single flows, but this is not common.

2.2.4 Packet Sampling

In the past link speeds has been increasing by about 50% each year [Roberts 2000],

while the speed of cheap memory (DRAM) only increased by about 10% per year

[Patterson and Hennessy 1998]. As a result the gap between link speeds and

memory increased as well. DRAM is too slow to keep up with the counters of flows

in modern network infrastructures. At the same time the number of parallel flows
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are increasing with the faster link speeds, and it is impossible to keep all of them

in expensive fast memory (SRAM).

This is the reason why packet sampling has been introduced as a network mea-

surement technique. Instead of capturing and analyzing every single packet

on the line, only some packets are selected. From this sub-population of se-

lected, »sampled« packets estimates are made about the total population of pack-

ets.

There are different approaches for basic sampling methods:

every Nth: This is the simplest approach and is how sampling with Cisco NetFlow

works. It strictly captures every Nth packet in a regular manner. Although

this is easy to implement and has a low performance profile, it can lead to

aliasing effects in case of regular patterns in the observed traffic.

1 out of N: This approach randomly selects one packet out of N packets. It in-

troduces randomness and thereby reduces the aliasing effects, while it still

maintains a constant sampling rate of one per N packets.

sampling probability p = 1/N: Every packet is sampled with a probability of p =
1/N. This approach has the least aliasing effects. On average one packet out

of N is sampled. However, the sampling rate is not constant but variable,

and there is a relatively high probability that bursts of consequently sampled

packets occur. The capturing hardware and software and its buffers must be

able to handle most of these bursts.

The information of the sampled packets can either be stored as special forms of

flow records, which represent only a single packet, or they can be used to estimate

the counters of the flows to which the sampled packets belong to [Duffield et al.

2003].

Besides these basic methods there are more sophisticated and specialized methods

being developed. For example, [Estan and Varghese 2003] propose a Sample and

Hold algorithm that samples packets with a probability p, but then captures all

subsequent packets that belong to the same flow as the first sampled packet. This

is possible because the per flow counters are held in a relatively small amount of



18 2. A Review of Network Traffic Measurement

fast SRAM. This method identifies the largest flows and has a higher accuracy in

respect to normal sampling.

Another variant of sampling is deterministic sampling. In this case the selection

function is a function of a packet property. A common example is to apply a hash

function on the header or the payload of the packet and to select packets with

certain hash values. This way a random-like packet selection can be achieved, while

the selection is still fully deterministic. That is, if different measurement points use

the same selection function, they will all sample exactly the same packets, which

can be important for comparison reasons, like for measuring one-way-delays from

one measurement point to another.

An IETF Working Group has been build for standardizing the methods and the data

handling of packet sampling in network measurements, called PSAMP [PSAMP].

The documents produced by this Working Group define a standard set of sampling

selection operations and how the information about the sampled packets and

the sampling process itself can be stored and exchanged in an interoperable way.

This Working Group is working closely together with the IPFIX Working Group,

which developed a flow information exchange standard that will be described in

section 2.3.3.

2.3 Distributed Data Collection

Usually, the traffic observation has not only to be done at a single observation

point, but at a whole set of distributed observation points. On the other hand,

it is necessary or at least helpful to have all the data at a single central point in

order to process, analyze, display and archive it in a structured and unified way,

giving the network operators the possibility to get an overview of the network as a

whole.

Therefore, it is necessary to transfer the measured traffic data to central data

storages in a standardized and interoperable way. There are a couple of different

protocols in use to transfer or access network traffic data, mainly depending on the
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type of traffic data. In the following sections we will introduce the most important

and common ones.

2.3.1 SNMP

The Simple Network Management Protocol (SNMP) is a standard protocol defined

by the IETF [RFC 3411]. It is designed to make information available about the

configuration and status of network-attached devices and systems. It is a polling

protocol, which means that a managing application accesses the device and asks

for the information it is interested in whenever it needs it.

Routers by most manufacturers have internal byte and packet counters, which

can be accessed via SNMP along with other network related information. These

counters are usually polled by central monitoring applications. SNMP values are

the usual input for all time series based measurements as described in section 2.2.2,

since they offer a simple interface to the counters or gauges which can be polled in

a regular interval to build up the time series databases.

Although very useful and common for a general overview and simple statistics,

the use of SNMP values is very limited. While SNMP is designed to transfer

single values on demand, it is not able to transfer more complex multidimensional

measurements like flow tables and the like.

2.3.2 NetFlow

In order to transfer measured traffic flow data from different measurement points

to a central collection point, Cisco developed NetFlow [NetFlow]. Besides being

a feature name for Cisco products that support flow measurements, the term

»NetFlow« also refers to the protocol that is being used to transfer the data the

routers and probes collected in their flow tables. In contrast to SNMP, NetFlow is

not a polling but a pushing protocol. That is, the data measured and collected over

time is actively sent to central servers, called Collectors.
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Understanding How NetFlow Data Export Works

Software Configuration Guide—Release 4.543-2

accounting. Flow collectors, such as the Cisco SwitchProbe and NetFlow FlowCollector, gather and 
classify flows. This flow information is then aggregated and fed to applications such as 
TrafficDirector, NetSys, or NetFlow Analyzer.

We recommend the Catalyst 5000 series Network Analysis Module (WS-X5380) or the Cisco 
SwitchProbe device as the flow collector for MLS. The Network Analysis Module provides 
extended RMON support and can analyze Ethernet VLAN traffic exported from the NFFC or 
NFFC II. For more information about the Network Analysis Module, see Chapter 33, “Configuring 
the Network Analysis Module.” The SwitchProbe device supports the two versions of data (Versions 
1 and 7) exported from the RSM and NFFC or NFFC II using NDE. SwitchProbe proxies the data 
to RMON2 for viewing from the TrafficDirector application. Support is also included for the 
RMON2 Management Information Base (MIB) group. Refer to the SwitchProbe Installation and 
Configuration Guide for information about SwitchProbe.

MLS Data Collection
An external data collector gathers flow entries from the MLS cache of one or more switches or Cisco 
routers. The switch or router transmits data to the flow collector by grouping flow entries for expired 
flows from its MLS cache into a User Datagram Protocol (UDP) datagram, which consists of a 
header and a series of flow entries. Figure 43-1 illustrates the NDE process.

Figure 43-1 Integrated MLS Management
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Figure 2.2: Architecture of distributed network measurements based on NetFlow.
(Diagram by Cisco)

In figure 2.2, the basic architecture of a NetFlow-based network measurement setup

is shown. Several NetFlow devices export flow records via the NetFlow protocol

to the Collectors. These NetFlow devices are either routers that directly observe

the traffic they forward, or probes that are connected to mirroring ports of central

switches. The Collectors are responsible for storing the data they receive and for

making the data available for further processing, analyzing and displaying by flow

applications.

Except in most recent versions [Flexible NetFlow], the flow definition of

NetFlow is fixed and consists of the 7-tuple given in the example on

page 13.
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Because of the dominance of Cisco products in network infrastructures, NetFlow has

become the de-facto standard for the transfer of flow-based network traffic measure-

ments and also has been adopted by other manufacturers. It is still the most com-

mon technology in today’s distributed measurement setups.

2.3.3 IPFIX

Although NetFlow is a widely adopted technology, it still remains a proprietary

standard. There was the need for an open internet standard for exporting flow

data of observed IP traffic that guarantees interoperability between exporting and

collecting devices of different manufacturers. Therefore, an IETF Working Group

for IP Flow Information eXport (IPFIX) has been established in order to create such

a standard.

After evaluation of different technologies, NetFlow version 9 has been chosen

as the basis for the IPFIX standard. Because of the wide deployment of Net-

Flow solutions, it can be expected that the IPFIX standard will soon be widely

accepted, since the similarity to NetFlow makes the migration fast and cost-

effective.

2.3.3.1 Architecture

In figure 2.3, the reference model of the IPFIX architecture is shown. Like with

NetFlow, there are two functional units: Exporters of Flow Records, which are called

IPFIX Devices, and Collectors, which receive the Flow Records. The flow data consum-

ing applications are either directly incorporated into the Collectors, or are separate

entities which communicate with the Collectors. The communication between

applications and Collectors is not part of the IPFIX standard.

IPFIX devices consist of two functional blocks, the Metering Processes and

the Exporting Processes. Metering Processes are responsible for the following

tasks:
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Figure 2.3: Reference model of the IPFIX architecture.

I capturing packet headers from one or several Observation Points, which to-

gether build an Observation Domain,

I time-stamping,

I sampling (optional),

I filtering (optional),

I creating and managing a flow table according to given flow definitions,

I timing out of inactive flows,

I handling of resource overloads.

The Exporting Processes are responsible for:

I creating Flow Records from the flows that are listed in the flow table,

I deciding when to send out Flow Records and related messages,

I creating IPFIX messages in compliance with the IPFIX protocol,

I sending out IPFIX messages to one or several Collectors.
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Collectors host one or more Collecting Processes, which receive the flow data from one

or several IPFIX Devices and have to take care of the following:

I receiving and decoding of the Flow Records and other IPFIX messages,

I storing and managing of meta data of the IPFIX protocol (Control Information),

I storing of the Flow Records,

I making available the Flow Records to flow consuming applications.

2.3.3.2 Protocol

The IPFIX protocol has been defined in [RFC 5101]. The main improvement in

respect to NetFlow is the use of templates. The use of templates has two important

advantages. First, they allow a flexible definition of which fields are part of a Flow

Record. This avoids Flow Records including any unnecessary fields, and their

structure can be adapted to exactly that of the desired flow definition. Second, the

templates allow Flow Records, which can be large amounts of data, to be transmitted

without any structural overhead in a condensed binary format.

For each type of exported Flow Record a template has to be sent to the Collector in

advance. The template defines the structure of the Flow Records with an ordered list

of Field Specifiers. A Field Specifier specifies what type of data the field contains and

its length in bytes. The description of the data type is done with Information Elements

(IE), which are defined in the IPFIX information model [RFC 5102]. Information

Elements give the Collector information about the data encoding and the semantic

meaning of fields. Some common examples for Information Elements and their

data types are:

I sourceIPv4Address (ipv4Address)

I destinationIPv4Address (ipv4Address)

I protocolIdentifier (unsigned8)

I sourceTransportPort (unsigned16)

I sourceMacAddress (macAddress)

I vlanId (unsigned16)
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I flowStartMilliseconds (dateTimeMilliseconds)

I octetTotalCount (unsigned64)

I packetTotalCount (unsigned64)

An important feature of the Information Element concept is its extensibility.

The standard IEs can be extended by including them in the IANA IE reg-

istry. Besides that, it is possible for enterprises to register an enterprise iden-

tifier which allows them to define their own enterprise-specific Information Ele-

ments.

2.3.3.3 Flow Keys

Some fields in a Flow Record build the flow definition, that is, these fields represent

the packet properties which have the same values for all packets in the same flow.

These fields are called Flow Keys. Besides Flow Keys, a Flow Record includes

other fields, most importantly measured properties of the flow as a whole, like

counter fields (like octetTotalCount or packetTotalCount) or time-stamps

(like flowStartMilliseconds).

2.3.3.4 Bidirectional Flows

RFC 5103 [RFC 5103] defines a method to export associated bidirectional Flows

(Biflows) in a single Flow Record. Two Flows combine to a Biflow if all non-

directional fields directly match, and all source-related fields match the correspond-

ing destination-related field of the other Flow. The Flows are merged by adding

special IEs for counter fields of the »reverse« direction from the destination to the

source.

This has several advantages: In most cases it is more efficient to assemble Biflows

at the measuring device than in a Collector. Also, Biflows share much information,

so exporting them as individual Flows creates a large amount of redundant data.

Furthermore, it is possible to give the two directions an additional meaning by

a Direction Assignment. In the case of TCP connections for example the normal
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counters could refer to the packets sent by the node that initiated the connection,

and the reverse counters to the packets received by it.

2.3.3.5 Flow Transformation

Because of the flexibility in the definition of flows, it is also possible to process

IPFIX Flow Records and transform them into other flows. It is, for example, a

common approach to reduce the amount of Flows Records by flow aggregation. This

means that groups of flows are merged into a single flow by adding up their counter

values. This can be done in two ways:

Aggregation by time Flow Records of the same flow but of different subsequent

time periods are added up and replaced by a single Flow Record that spans

over a longer time period. This is equivalent of reducing the time resolution

of the Flow Records. For example, if five-minute Flow Records are aggregated

to one-hour Flow Records, up to twelve Flow Records are replaced by one

Flow Record.

Aggregation by Flow Keys In this case, a new flow definition is made by removing

one or more Flow Keys from the definition of the existing Flow Records. All

flows that only differ by the values of the removed Flow Keys are aggre-

gated. Besides the number of flow-records, this also reduces the number

of »dimensions« of the flows, that is, the number of Flow Keys. There-

fore, it saves memory space in two ways. For example Flow Records with the

Flow Keys <sourceIPv4Address,destinationIPv4Address,source-

TransportPort,destinationTransportPort> could be aggregated to

Flow Records with the Flow Keys <sourceIPv4Address,destination-

IPv4Address>. This would aggregate all the Flow Records of parallel

connections between two hosts into one Flow Record.

Another important method to reduce the size of the Flow Records, but in a lossless

way, is to reduce the redundancy. It is the normal case that many Flow Records

are very similar and differ only in a few Flow Keys. This redundant data, the

Common Properties, is normally included in every single Flow Record. In order to
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save this memory, [RFC 5473] describes how to export the Common Properties

only once in a special Flow Record, called Common Properties Data Record, defining

a commonPropertiesID. All the subsequent Flow Records which match these

Common Properties are then replaced by Flow Records – the Specific Properties Data

Records – that only include a single Flow Key with the corresponding commonProp-

ertiesID instead of the original shared Flow Key fields.

2.3.3.6 Mediators

A general problem with flow-based distributed network traffic measurements is

the lack of scalability. With increasing size of the observed network, the number of

observation points increases as well, and with increasing link speeds, the number

of parallel observed flows increases. As a result the data that has to be processed

by a single central collector will easily reach existing limits of the processing or

network resources of the collector. To prevent this, the IPFIX Devices would have

to export less and less data to the collectors as a compensation, rendering the the

whole measurement infrastructure less effective. This renders the original IPFIX

architecture of IPFIX devices directly exporting to Collectors unfeasible for large

and fast networks.

In order to cope with this problem, the concept of a Mediator is currently being

developed by the IPFIX Working Group in several document drafts [Kobayashi

et al. 2008a, b]. In figure 2.4 an exemplary scenario of an IPFIX infrastructure with

Mediators is shown. A Mediator is basically a device which incorporates both a

Collecting Process and an Exporting Process as well as with optional Intermediate

Processes. It receives Flow Records from IPFIX devices or other Mediators and can

process the data in a number of different ways, such as

I data reduction by aggregation or filtering,

I data correlation and combination from different devices,

I data modification (anonymization for instance), and

I data storage in distributed – and therefore scalable – repositories.
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Figure 2.4: Scenario example for the use of Mediators in an IPFIX measurement
infrastructure.

The processed data is exported to a Collector or another Media-

tor.

So, Mediators implement a tradeoff, distributing the processing and storage needs

of fine grained data, while the Collector still receives the amount of data it can

handle.
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Chapter 3

Flow Data Reduction: Mouse Trapping

3.1 Introduction

The concept of network flows is today the most common way to accomplish passive

traffic measurements for general purposes and to further process and store that

data. Such flow measurements are used for numerous applications like traffic

engineering, performance monitoring, detection of different types of anomalies and

accounting. For some of these applications it is necessary to observe the traffic at

fine granularities on a short-term basis, because anomalies may have very subtle

signatures and a real-time detection and response may be required. On the other

hand, for other applications the data has to be stored for a long time, to be able

to observe long-term trends, or for forensic research after an incident, for instance.

As a result, network operators have to deal with huge amounts of data, which

implicate several problems in the data management. In most cases the size of the

data repositories will not increase faster than the amount of collected traffic data, so

every data repository will eventually overflow, if old data is not dealt with. Another

problem which already exists today, is central data collectors cannot handle all the

information from the measuring points in large networks. Therefore, to keep the

whole system scaleable, so-called mediators have to be used, which, among other

things, have to filter and aggregate the data, forward only the necessary data to the

collectors, and act as decentralized data repositories. In order to cope with these

problems, it is very helpful to have methods that are able to condense flow data,

that is, to extract the more important and remove the less important data. In this



30 3. Flow Data Reduction: Mouse Trapping

chapter, based on the work in [Anderson and Hogrefe 2008], a flow data reduction

method – Mouse Trapping – is introduced and evaluated.

Of course it depends on the application, what is considered important and what

is not. But the lossy nature of such a method is not necessarily in contradiction

with all the applications outlined before if it is applied at a certain time or a certain

location. For instance, fine grained data, which is only kept for an optimal intrusion

detection, does not have to be kept longer than the typical reaction time of the

detection system.

As it has been reported by other studies like [Fang and Peterson 1999] and [Feld-

mann et al. 2001], for many applications it is sufficient to only look at the large

flows. This is due to the fact that the flow sizes of internet traffic are highly

non-uniformly distributed: many flows are very small, and very few flows are

large. These applications include network engineering [Feldmann et al. 2001], de-

tection of denial-of-service attacks and even billing [Duffield et al. 2001]. Following

this, [Estan and Varghese 2003] proposed to »focus on the elephants, ignore the

mice« and developed algorithms to achieve this directly in high-speed routers.

But because this is quite a complex method, it is doubtful, if it will be broadly

adopted.

Mouse Trapping uses the same approach, but instead of filtering the data already

in the monitoring device, it applies the concept after the measurement in order

to reduce and condense the flow data, and therefore is supposed to be used in

Mediators and Collectors. Accordingly it reduces the number of flow records by

filtering (»trapping«) the records of small flows (»mice«) for further aggregation

or removal, while most of the traffic is still represented by the large flow records

that remain. In a theoretical simulation we show, that in the range of realistic

parameters this method is very effective. However, it is assumed that the non-

uniform flow size distribution of internet traffic follows an underlying power-law,

comparable to many other power-laws that have been identified in the field of

computer networks such as: Ethernet traffic [Leland et al. 1995], WWW traffic

[Crovella and Bestavros 1997], internet topology [Faloutsos et al. 1999], visits of

websites [Adamic and Huberman 1999], to name a few. The evaluation of Mouse

Trapping with real internet traffic verifies this assumption and shows that – for the
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simple case that all small flow records are just discarded – a reduction of 1:10 can be

achieved, while information about only 5% of the traffic is lost.

3.1.1 Related work

In [Aiello et al. 2005] a different lossy compression method for traffic data is pre-

sented, which is based on signal processing techniques, which makes it difficult

to see what data is actually lost. Flow size distributions have also been analyzed

in [Liu and Huebner 2002] for different application protocols, but since no eval-

uation in respect to power-laws has been done, it cannot help to estimate the

efficiency of Mouse Trapping. Also [Kumar et al. 2005] analyzed flow size distri-

butions for different protocols to estimate the distributions from sampled traffic

data.

3.1.2 Outline

This chapter is organized in the following way: In section 3.2 we briefly describe

some terminology and statistic basics which the method is based on. Section 3.3

examines the relation between the flow sizes and the amount of traffic for simulated

power-law distributed flows and introduces the Mouse Trapping method. In sec-

tion 3.4 the method is evaluated with real traffic data for the total traffic and some

application based subsets by first examining the power-law nature of their flow size

distributions and finally determining the reduction efficiency.

3.2 Basic principles

3.2.1 Flows

Flows are the most common way to store general information captured by passive

traffic measurements today. As the term flow is used in many different ways by the

internet community, a short description of the flows used in this work will be given.
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This is done according to the terminology and flow definition of the IPFIX Protocol

specification [RFC 5101].

Flows are defined by a number of flow keys, which represent certain properties of the

packets. All packets sharing the same flow key values belong to the same flow. Ad-

ditionally, certain counter keys are kept per flow, for example the number of packets,

the number of bytes, or the number of sessions. These flows are stored in flow

records including time stamps of events like the first and last observed packet. This

is done periodically to obtain the flow development over time.

3.2.2 Power-laws

Many objects and events in nature, technology and society follow a power-law

distribution

y = Cx−a, (3.1)

where y is the quantity and x the size of an observation. There are many popular

power-law distributions: The Pareto distribution

Pr [X ≥ x] =
(m

x

)k
,

describes the probability, that the size X of an observation is larger than x, and the

Zipf distribution

X(r) ∼ r−b,

describes the relation between the size X and the size-rank r of an observation. All

these distribution’s exponents are related by

a = 1 + k = 1 + b−1,

and hence they basically all describe the same type of distribution [Adamic 2000].

These distributions have the interesting property that small elements are very

common and large elements are very rare. Which is why they are also known as

heavy-tail distributions.
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3.3 Mouse Trapping

In the field of computer networks and the internet many power-laws have been

identified as well [Leland et al. 1995; Crovella and Bestavros 1997; Faloutsos et al.

1999; Adamic and Huberman 1999], and it is a widely accepted fact that the sizes

of flows are usually highly non-uniformly distributed, that is, most flows are

small, and very few flows are large [Fang and Peterson 1999; Feldmann et al.

2001].

3.3.1 Flow size distributions

If the flow sizes of usual traffic are in fact power-law distributed, the vast majority

of the flows are very small flows, whereas large flows are very rare. A rising

question is then, what the relation is between the amount of traffic represented

by the large flows and by the small flows, respectively. This leads to one to the

following assumption: The few large flows together represent the main part of the

overall traffic and the many small flows represent only a small fraction of the traffic.

We will look into this with more detail now.

For a numeric estimation we assume the flow size distribution

f (x) = Cx−a

perfectly follows a power-law (equation 3.1), where x is the flow size, and f (x) is

the number of flows of size x, then the flow size-traffic distribution, that is the amount

of traffic represented by the flows of a given size x, follows as

t(x) = Cx−a · x = Cx1−a.

So in a double-logarithmic plot, the slope of the amount of traffic is more shallow

by one than that of the number of flows, that is, the traffic is shifted to larger flow

sizes in respect to the number of flows. The effect of this becomes more clear, if we
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look at the relation of the cumulative distribution functions (CDF)

F(x) = CF

x

∑
i=xmin

i−a and T(x) = CT

x

∑
i=xmin

i1−a,

which are the sums of the number of flows and the amount of traffic, respectively,

for all flows with a flow size ≤ x. CF and CT are chosen so that the CDFs are

normalized, that is, T(xmax) = F(xmax) = 1. In other words: the relation between

F(x) and T(x) tells you what fraction of the smallest flows represent what fraction

of the total amount of traffic. This relation highly depends on the exponent a and

the bandwidth of flow sizes, defined by the minimum and maximum flow sizes

xmin and xmax, between which the flow sizes are distributed.

3.3.2 Flow size filter

Figure 3.1 shows a normalized plot of F(x) against T(x) for simulated distributions

for different exponents a. In this case a flow size bandwidth of 226 (almost 8

decades) was used, which corresponds to the observed flows from section 3.4. It

is striking that if you look at the slope for a = 2.0, for example, 85% of the flows

represent only 10% of the overall amount of traffic. For lower a’s this relation

drifts even further apart. For a = 1.6, 95% of the flows represent only 0.6% of the

traffic.

So far, no assumptions on the flows’ definitions were made, that is, which specific

flow keys they are composed of. We just assumed, that the flow sizes follow a

power-law, which has been reported to be true for most flow data. Consequently

it is very likely that for any given flow data repository it is more or less true, that

most of the traffic is represented by a few large flows.

This leads to the following concept: it must be possible to reduce the number of

flows by a large amount, and thus the size of the flow data in general, by filtering or

aggregating (»trapping«) all small flows (»mice«) up to a certain flow size threshold

X, while at the same time keeping the full information about the large flows,

representing the main part of the overall traffic. For example, all the small flows



3.3. Mouse Trapping 35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001  0.01  0.1  1

p
ro

p
o
rt

io
n
 o

f 
fl
o
w

s

proportion of traffic

a=1.6
a=1.8
a=2.0
a=2.2

Figure 3.1: Theoretical relation between cumulated flows and cumulated traffic for
different exponents a.

could be aggregated into one »noise« flow, containing no information but the total

amount of the small flows. This approach – »focus on the elephants, ignore the mice«

– is already quite popular in similar areas [Estan and Varghese 2003], since for many

applications the knowledge of the large flows is sufficient.

The threshold X can be chosen depending on the needs of the application. If a

guaranteed fixed reduction rate r in respect to the number of flows is needed, X

can be calculated by maximizing x for which F(x) ≤ r. (For example r = 0.9 to

reduce to 10% of the original flow repository size.) If it is important to limit the

loss of information about the represented traffic, X can be determined by a fixed

loss rate l. In this case X is calculated by maximizing x for which T(x) ≤ l. (For

example l = 0.1 to lose only the flows of 10% of the traffic.) Of course X can also

be estimated as a dynamically changing value, if the method is applied in a system,

where an early decision has to be made, if a flow belongs to the elephants or the
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mice.

If this method is applied to the overall traffic with one static threshold X, it should

work as expected. But there will be certain subsets of flows (like certain application

protocols), which tend to have smaller packets and smaller flows and therefore

will be over-proportionally affected by the loss. To avoid this, for each subset of

interest a separate Xn can be calculated and applied. This makes sure that the

constraints defined by r or l are true for each subset, and not only for the overall

traffic.

It is up to the implementation, how the trapped small flows will be further pro-

cessed. Besides the extreme solution mentioned before, in which all the »mice« are

just deleted or aggregated into a single »noise« flow, many other approaches are

imaginable. For example, small flows could be aggregated to bigger compound

flows with less flow keys or less time resolution. In the end, even several levels

of different thresholds can be combined, to keep less information the smaller the

flows are. The possibilities are manifold.

3.4 Evaluation

In this section we evaluate the proposed method with real traffic data. Therefore

we first analyze the data, to verify that the flow distributions in fact meet the

assumption of following a power-law distribution. Then we calculate the reduction

rates for different given loss rates for the simple case that all the small flows are

aggregated to one single »noise« flow. To give an example how to apply the

method on different subsets and to learn more about the characteristics of different

applications, we will calculate this individually for certain application protocols as

well.

3.4.1 Traffic data description

The measured flows in this case are classical flows, which consist of the following

five flow keys:
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I IP source and destination address

I source and destination port (if present)

I IP protocol ID

For each flow, the bytes and packets are counted and stored once per minute together

with a time stamp in a flow record. In this case, no session information like

TCP sessions or UDP packet timeouts are used to trigger flow record creation.

For later data analysis, all the flow records during one hour for each flow have

been aggregated into one flow record. That is, for each flow represented by a

flow record the duration is limited to one hour and therefore the size is limited

by bandwidth ∗ 3600s. Flows of longer duration are split up into several flow

records.

The traffic data has been collected from three network up-links of a medium-sized

IT service and consulting company [SerNet]:

I 100 Mbit/s Ethernet

I 2 Mbit/s leased line

I 6 Mbit/s ADSL link

The data was collected for the period of 66 days from June 27th, 2006 until Septem-

ber 1st, 2006 and represents an overall traffic of 2.2 TiB.

For the measurement probe, a normal PC hardware was used, running OpenBSD

and connected to a Gbit monitoring port of a switching hub that connects to all of

the three up-links. The monitoring software in use is pmacct[pmacct], which in this

case writes the observed flows into a PostgreSQL database.

The mixture of traffic derives from broadly diversified applications, as these links

are used both to access the in-house server-farm from outside as well as by the

employees for the everyday service and management work.

A detailed overview of the proportions of the flow numbers and data amount

in relation to the overall traffic is given in Table 3.1 for a selection of application

protocols. HTTP here refers to HTTP and HTTPS (ports 80 and 443), and FTP

refers to ports 20 and 21, so FTP data connections on unprivileged ports are not
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Protocol Byte % Flow %

HTTP 44.6 34.6
FTP 0.5 0.1
SMTP 6.5 16.7
DNS 1.0 35.2
SSH 29.3 5.9
OpenVPN 1.6 0.0
other 16.4 7.4

Table 3.1: Protocol distribution of bytes and flows

included, as these are only detectable by application layer analysis. It becomes

evident that most of the flows are produced by the protocols HTTP, DNS and

SMTP.

3.4.2 Distribution analysis

Extensive analysis, if the flow size distribution follows a power-law, and if so, with

which exponent and error, is hard to find, especially for fine-grained flows like the

ones used in this work. It is also an open question to what extent such analysis is

transferable to other kinds of traffic, as the characteristic traffic probably does not

exist.

Since the proposed method to reduce the flow data is based on the assumption

that the flow sizes are distributed at least close to a power-law distribution, it

was necessary first to examine and verify this for the actual data. To get a deeper

insight, make the results better transferable to other types of traffic and to show

how this method can be applied separately to different subsets, this is done for

each application protocol from Table 3.1 independently as well as for the overall

traffic.

3.4.2.1 Logarithmic binning

Figure 3.2 shows the raw flow size distribution of the overall data in a double-

logarithmic plot. Although one can clearly see a linear relation between the flow
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Figure 3.2: Raw data of a flow size distribution

sizes and the corresponding number of flows, the plot is very noisy, and not suitable

for a linear regression analysis. This is especially true for the flattened-out tail,

which biases the slope of the fitted line.

To gain a proper fit, the number of flows has to be summed up into bins of

exponentially increasing flow size width, which is called logarithmic binning. This

significantly reduces the noise and extends the region of linear relation. But because

of the increasing width, the bins of higher flow sizes are weighted stronger. Applied

on a power-law distribution this results into an exponent increased by one. Hence

the expected slope of the fitted line is 1− a, which equals the exponent −k of the

Pareto distribution.
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Figure 3.3: Logarithmic binned flow size distributions for selected application pro-
tocols.
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Figure 3.3: Logarithmic binned flow size distributions for selected application pro-
tocols. (cont.)
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Figure 3.3: Logarithmic binned flow size distributions for selected application pro-
tocols. (cont.)
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Figure 3.3: Logarithmic binned flow size distributions for selected application pro-
tocols. (cont.)
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3.4.2.2 Results

In Figure 3.3, the results of the logarithmic binning are shown together with the

fitted lines of the linear regression. Most of the distributions have a nice linear part

spanning over a wide range of flow sizes, making them mostly Pareto distributed.

Nevertheless, there is always an increasing part at small flow sizes, up to a flow

size of about 28 to 210 bytes. Therefore, not all values were used for the linear

regression. Instead, only the maximum value and values of larger flow sizes

were used, respecting the fact that this is about the point where the linearity

starts.

The approximated exponents a = 1− m reach from 1.53 to 2.13. It is noticeable

that the protocols HTTP, DNS and SMTP, which have exponents close to 2, are

also the protocols which hold most of the flows of the overall traffic (see Table 3.1).

Furthermore, the protocols FTP, SSH and OpenVPN, which have exponents around

1.6, are known to be used for long lasting sessions and/or tunnels, which – once es-

tablished – are likely to persist for a longer time. This again explains, why a is lower

in relation to the other protocols. Noticeable as well is that for SSH – partly running

on the standard port – there is a large amount of flows smaller than 213 bytes,

which could result from vulnerability attacks, while for OpenVPN – running on a

secret port – there are very few flows smaller than 213 bytes.

The overall traffic is expected to be mostly Pareto distributed as well, similar to

the protocols contributing most (HTTP, DNS, SMTP). This corresponds to Fig-

ure 3.3(h).

3.4.3 Mouse Trapping efficiency

In Figures 3.4 and 3.5, the relation between the normalized flow and traffic CDFs

of the actual data is shown. Although these gradients cannot be expected to

look exactly like the theoretical ones because of the »slow start« and other »non-

linearities« of the real flow size distributions, the similarities to Figure 3.1 are

obvious nevertheless. If you look at the slope of DNS for instance, which has the

most Pareto-like distribution with a = 2.13, you see that it is very similar to the
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Figure 3.4: Relation between cumulated flows and cumulated traffic for selected
application protocols.
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Figure 3.4: Relation between cumulated flows and cumulated traffic for selected
application protocols. (cont.)
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Figure 3.4: Relation between cumulated flows and cumulated traffic for selected
application protocols. (cont.)
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Figure 3.4: Relation between cumulated flows and cumulated traffic for selected
application protocols. (cont.)
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Figure 3.5: Relation between cumulated flows and cumulated traffic for all ports in
comparison.

theoretical slope for a = 2.2. Compared to that, FTP, with a measured a = 1.66, is

between the theoretical slopes for a = 1.6 and a = 1.8, as expected. The effect of the

large amount of small flows in the SSH distribution is that the slope reaches almost

100% of the flows already at 2% of the traffic. On the other hand, for OpenVPN,

which has very few small flows, the slope is the most shallow one. In this graph

you can already see, which reduction rate r you can expect for a given loss rate l

and vice versa by using the proposed reduction method.

3.4.3.1 Reduction rates

In Table 3.2, the reduction rates for the measured data are shown for three different

given loss rates. The values are the mean values and standard deviations of 65 days,

if the reduction is done on the data of each day separately. If information about

only 1% of the traffic may be sacrificed, only about half of the flow records can be

removed. But already at a loss rate of 5% the overall flows can be reduced by about
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Protocol r (l=10%) r (l=5%) r (l=1%)

all 96.6 (±1.1) 91.8 (±2.7) 62.0 (±6.0)
HTTP 86.7 (±1.7) 77.2 (±2.0) 42.3 (±3.7)
FTP 83.7 (±27.1) 79.2 (±29.4) 49.4 (±30.3)
SMTP 86.9 (±15.2) 73.6 (±19.4) 32.0 (±11.0)
DNS 52.5 (±4.8) 35.3 (±3.6) 8.5 (±1.3)
SSH 99.9 (±0.3) 98.6 (±6.5) 76.1 (±23.6)
OpenVPN 80.7 (±11.3) 71.3 (±14.8) 47.3 (±18.9)
other 99.2 (±1.2) 97.7 (±3.0) 84.6 (±10.7)

Table 3.2: Reduction rates for different given loss rates.

90%, achieving a reduction ratio of 1:10. For the important protocol HTTP, the

reduction rate is at about 80% (1:5). Only DNS seems to be a problem. Although

it is the protocol with the most Pareto-like distribution, the reduction rates are

weak because of the large exponent (a = 2.13) and the – compared to the other

protocols – small flow size bandwidth of only 219. Therefore, in most cases it will

be not advisable to select DNS as a subset with an independent threshold, but

instead to let it in the »others« group and accept that due to a higher threshold

more information about DNS will be erased.

3.5 Chapter summary

In this chapter we introduced the flow data reduction scheme Mouse Trapping. We

showed by simulation that Mouse Trapping is an effective method to reduce the

amount of flow data by only keeping the large flows, which represent the main

part of the overall traffic. The theoretical simulation only assumed a power-law like

flow size distribution and no other characteristics of the flow data. The analysis

per application protocol showed that some subsets of traffic exist, for which this

assumption is not true. So in the unusual cases that the flow sizes are not power-

law distributed at all, the method does not work very well. Also this is a lossy

reduction method and might not be suitable for some applications which depend

on the information of the small flows, like, for example, some subtle intrusion-

detection-system. But our data analysis and other studies showed that common



3.5. Chapter summary 51

internet traffic is almost power-law distributed and it can be assumed that this

method works well in general. The evaluation showed that for common traffic a

data reduction of up to 90% can be achieved with a loss of information about only

5% of the traffic. Since for many applications the information loss about the small

flows is acceptable, it can be a useful method, for example, to condense old data in

flow data repositories or to use it in mediators to filter data that is forwarded to

central collectors.

The future work on this approach may include research on effective and fast meth-

ods to determinate the threshold without the need to scan through all the traffic data,

by applying sampling techniques, for instance. This is especially interesting for the

application in mediators, that need a fast decision, if a flow should be forwarded to

a Collector. Another important field as well is the evaluation of Mouse Trapping for

traffic data measured by packet and flow sampling mechanisms, which are already

widespread especially in high-speed backbone measurements.
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Chapter 4

Interactive Flow Data Analysis: FloX (Flow

eXplorer)

4.1 Motivation

A major challenge in flow based traffic measurements is the extraction of important

information, its presentation and the interaction of the observer with the data.

There are generally way too many raw flows to get an overview just by inspecting

the flow tables themselves. Especially for flows with many flow keys the mutual

interrelation remains hidden for the human eye. To efficiently work with such

data it is inevitable to have good analysis and presentation tools, which enable

the administrator to extract necessary and important information. Of course,

there cannot be a single »one-fits-all« tool, and the design highly depends on the

requirements and applications for which such a tool is going to be used. These

tools or user interfaces might range from simple-to-observe »OK/not-OK« status

displays that can report the existence of a problem at a glance without giving

any further detail, to complex assistance tools that aid an investigator in actively

examining the data in a structured and ingestible way.

In this chapter we will describe the design and implementation of a simple but very

useful tool called FloX (Flow eXplorer) [FloX] that is mainly intended to examine the

flows of high-bandwidth events by providing rankings of dynamically defined flow

aggregates.
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Figure 4.1: Example of separate time series measurements stacked in a single plot,
in this case several interesting port numbers.

4.2 Analysis of Peak Events

Many problematic events in network traffic monitoring involve a high bandwidth

usage, since this usually results in higher costs, higher latency and worse Quality-

of-Service in general. Besides these direct impairments, an unusual high bandwidth

usage can be an indicator that something undesired is happening that might

compromise the security of the connected systems and infrastructure. Therefore,

if in a time series of measured bandwidth usage an unexpected peak appears,

it is the usual case that the network administrator would like to know where

this peak is coming from, and how exactly the traffic looks like that caused the

peak.
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A first step would be to measure separate time series for certain subclasses of traffic,

like for each of a number of important hosts or interesting port numbers, as in the

example shown in figure 4.1. However, the additional information is very limited

and such an approach is not flexible, since it has be known in advance which sub-

classes of traffic might be interesting. The investigator might also want to analyze

the characteristics of the peak according to further attributes such as the client IP

addresses, used transport protocols, or the distribution of port number usage in the

higher port ranges above the »well known ports«. The latter is very important for

identifying certain malware activities, for instance.

If in addition to a simple time series fine grained flows are measured as well, all

interesting information about the peak is stored somewhere in flow record tables,

but is unaccessible for a human without further analysis tools. So if the investigator

is given easy access to all this information, it would be possible to answer questions

such as:

I Where did the traffic come from and where did it got to?

I What does the host relation matrix of the traffic look like?

I Are only two hosts involved? (1:1 relation)

I Is one host addressed by many distributed hosts, like it is the case for DDOS

attacks? (N:1)

I Is one host addressing many distributed hosts, like it is the case for suddenly

demanded services, but also for hosts that scan for other hosts. (1:N relation)

I Is the event not related to a single host, but contains arbitrary host relations,

like it is the case for temporary rerouting of traffic in carrier network. (N:M

relation)

I What services is the event related to? WWW, email, file-sharing...

I Is the event due to a single large flow (a single TCP connection for instance)

or many small flows?

I Is it TCP or UDP traffic?

Hence, there is the need for a tool that provides a way to »dig« into a high traffic

event in a flexible way and to surface as much information about the characteristics
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of the responsible traffic as possible and necessary. It should make use of the

fact that in the given scenario of a sudden bandwidth peak, the additional traffic

accounts for a big share of the overall traffic.

4.3 Divide and Conquer Approach

The basic idea derives from typical »divide-and-conquer« approaches, for example

the one a system administrator might take, when the hard disk space usage has

suddenly increased unexpectedly or a filesystem is even completely full and he or

she wants to find out what the reason for this increase is, that is, which directories

or files are responsible for the increase.

A simple method is to start at the root of the affected file system hierarchy and

sum up the size of each directory. In Unix environments this is usually done

with a simple ‘du -s *’ command. The experienced administrator will notice

unusual sizes – also knowing in which directories there usually is writing activity

– or automated scripts can compare the sizes with former sizes. Hereupon the

administrator (or the script) enters the conspicuous directories – in most cases only

one – and again sums up the sizes of the subdirectories. This process is repeated

until as few directories or files as possible are identified, which are responsible for

the increased disk space usage.

To characterize this in a more abstract way: the space of data elements is divided

into subspaces according to a stratification criterion. If possible, this criterion

is ideally chosen in a way that supposedly most of the unusual data elements

are contained in one or few of the subspaces. (In a file system hierarchy there

is no such choice, of course.) Then the sizes of all elements are summed up for

each of the subspaces. If one of the sums is unusually high, this subspace is

chosen as a new basis and a new stratification criterion is chosen. This is repeated

until a minimal subspace is found containing all or most of the unusual data

elements.

Following this concept we designed a simple, yet very useful and flexible tool and

built a proof-of-concept implementation. This tool helps to explore the internal
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Figure 4.2: Diagram of the work flow for analyzing flow records of a peak event
with the FloX software.

structure of a large number of flow records. Therefore the name FloX has been

chosen, which derives from Flow eXplorer.

The diagram in figure 4.2 illustrates the general work flow for using FloX to analyze

a traffic peak event. The peak event has to be defined by selecting an appropriate

time-window that should not contain much more than the time period of unusual

high traffic. This information usually can be gathered from a general bandwidth

usage graph. Any of the flow-keys can be chosen as the stratification criterion.

Then the sizes of all flows are summed up for each existing value of the chosen

flow key. Technically this is the same as aggregating the flow records to simple

»single-flow-key flows« containing only the chosen one. The N largest of these

aggregated flows are then displayed to give an overview which values of the chosen

flow-key are the most frequent ones in the observed traffic. It is important to note

that flows can have several counters that could equally serve as »size« of the flow,
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like the number of bytes or the number of packets. Therefore it is also necessary to

select one of the counter fields as the ranking criterion.

For a typical peak event, the peak is significantly higher than the average traffic. So,

if a suitable flow-key has been selected, the largest aggregated flow should stand

out of the rest or at least an unusual value should be found among the largest

aggregates, like unexpected port numbers or IP addresses. Otherwise a different

flow-key can be selected for a new aggregation. After an interesting value has been

identified, this value can be selected and all further operations are only done on

the subspace of flow records matching the chosen flow-key value. Then another

flow-key is selected for aggregation and the whole procedure is repeated until

no further flow-key can be selected in order to separate the unusual traffic from

the rest. At this point, as many flow-key values as possible have been identified

defining the characteristics of the peak traffic.

4.4 Implementation

FloX is a web application and has been implemented in the PHP scripting language.

It presents an HTML based user interface, and the interaction is realized with links

and HTML forms that iteratively re-invoke the same script again. Since the PHP

script itself is »stateless« (a better expression might be »single-state«), the state

of the analysis process is stored in the parameters of the PHP script URL, a very

common technique for simple web applications.

Besides managing the user interaction, the main task of the script is to translate the

user requests into SQL queries and to send them to a database. The performance

of the script itself is not critical, because all expensive calculations are processed

by the database management system. Hence, the performance of the database

determines the performance of FloX, and good performance adjustments of the

DBMS are necessary. FloX has been tested with PostgreSQL and MySQL, but since

it uses a database-independent SQL-API for PHP, Pear-DB, the adaption to other

supported DBMS should be easy.
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Figure 4.3: An exemplary peak in a traffic usage that will be analyzed with FloX.

The configuration of FloX is simple but flexible and can be adapted to many

situations. First of all, the connection to the database must be configured. Although

FloX has been designed to work with flow record tables created by the traffic

measurement software pmacct [pmacct], it should be able to handle virtually any

kind of flow record table. It only has to be defined in the configuration file which

columns in the table represent counter fields, which column should be used as the

time stamp and which format the time stamp has. All columns/fields that are not

counter fields are handled as flow keys. This is true even for the time stamp field,

which is strictly speaking not a real flow key, but it can come in handy in certain

situations.

FloX has been published as Open Source Software under the GNU General Public

License [GPL] and is offered as a free Internet download [FloX].
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FloX

Tables

uplink1  uplink2  uplink3

Please select a table.

FloX v0.1.1 • © 2006 Sven Anderson <sven(at)anderson.de>

Figure 4.4: Select database table in startup screen.

4.5 Usage Example

In this section we will show with an example from real traffic data how a peak

event can be analyzed with FloX. Figure 4.3 shows a plot of the network traffic

over time. These types of plots are very common in network management and are

usually generated with time series tools such as RRDTool. However, no matter if

they represent the broad traffic of a whole traffic exchange point, a certain network

link or a very specific subset of traffic like for a single host or port, the information

about the peak is very limited. If a fine grained flow measurement has been done

in parallel to the time series, there is much detailed information hidden about the

inner structure of such a peak event.

The flow records used for this example are very fine grained. They have a

time resolution of one minute, eleven different flow keys and the three counter

fields for the number of bytes, packets and sessions (TCP connections, for in-

stance).

As a first step, it is necessary to select the smallest window that contains the

whole peak. Since the flow data for this example has a time resolution of

one minute, the time window ranges from 18:33h to 18:45h (see marks in fig-

ure 4.3).

In figure 4.4, the startup screen of FloX is shown. If the traffic data has been

separated into different tables, for example for different network links, a table has

to be selected.
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FloX

Tables

uplink1  uplink2  uplink3

Flow Keys

agent_id  class_id  mac_src  mac_dst  vlan  ip_src  ip_dst  port_src  port_dst

ip_proto  tos  stamp_inserted  stamp_updated

(click on key to calculate the summation ranking for that key)

Settings

Time Interval: stamp_inserted from  to  

Ranking Length: 10               Order Counter: bytes  

SQL Conditions:  (will be added to the WHERE clause) 

update

FloX v0.1.1 • © 2006 Sven Anderson <sven(at)anderson.de>

2006-07-17 18:33:00 2006-07-17 18:45:00

Figure 4.5: Enter time window of examination.

In the next step (figure 4.5), the time window for examination has to be entered

which is going to be examined, that is, only flow records with a matching time

stamp are used for analysis. In this case, this is the time window of the peak

as determined from the time series plot before. Since the implementation of the

user interface is purely based on passive HTML code without any client executed

code like Javascript, the »update« button has to be pressed in order to store that

input.

Now the first flow key must be chosen, for which the flow counters are summed up

for each of its values (see figure 4.6). In this example we chose the source IP address

(ip_src) as the first selection in order to find out where most of the flows came from,

because there is a good chance that most of it came from one IP. The calculation is

started by clicking on the according flow key. After the calculation has finished, the

result is shown in the Summation Ranking section.

As expected, the vast majority of the traffic came from a single IP address

(192.168.166.209). However, in the case of a DDOS attack this would be differ-

ent and therefore can at this point already be excluded as a possible reason for the

traffic peak. Also the relatively low total number of sessions for this IP address
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FloX

Tables

uplink1  uplink2  uplink3

Flow Keys

agent_id  class_id  mac_src  mac_dst  vlan  ip_src  ip_dst  port_src  port_dst

ip_proto  tos  stamp_inserted  stamp_updated

(click on key to calculate the summation ranking for that key)

Settings

Time Interval: stamp_inserted from  to  

Ranking Length: 10               Order Counter: bytes  

SQL Conditions:  (will be added to the WHERE clause) 

update

Summation Ranking

ip_src bytes packets sessions

192.168.166.209 4497440931 3002963 12 select

192.168.27.5 99775160 1839752 12 select

192.168.80.250 25464835 21347 1 select

192.168.27.123 17499276 14246 151 select

192.168.27.227 15350699 10340 21 select

192.168.27.110 8965574 6472 63 select

192.168.27.225 8136442 6443 142 select

192.168.80.133 6988094 5345 69 select

192.168.75.80 6533989 10573 13 select

192.168.80.156 6085009 5215 110 select

FloX v0.1.1 • © 2006 Sven Anderson <sven(at)anderson.de>

2006-07-17 18:33:00 2006-07-17 18:45:00

Figure 4.6: Aggregated flows for each source IP address.

already reveal something about the type of traffic. It obviously consists of a few

long lasting sessions that transferred a large amount of data, like it is typical for file

transfers or media streams, for instance. Accordingly, there cannot be a lot different

destinations for these packets.

Since the traffic responsible for the peak is obviously connected to this single IP

source address, it can be selected as a fixed value for the flow key ip_src by pressing

»select« next to it. This means that all further operations will only be made with

the flows that match that specific source IP address.

In figure 4.7 the next step is shown. As an indicator that a fixed flow key value
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FloX

Tables

uplink1  uplink2  uplink3

Flow Keys

agent_id  class_id  mac_src  mac_dst  vlan  ip_src: 192.168.166.209  ip_dst

port_src  port_dst  ip_proto  tos  stamp_inserted  stamp_updated

(click on key to calculate the summation ranking for that key)

Settings

Time Interval: stamp_inserted from  to  

Ranking Length: 10               Order Counter: bytes  

SQL Conditions:  (will be added to the WHERE clause) 

update

Summation Ranking

ip_dst bytes packets sessions

192.168.27.5 4497440931 3002963 12 select

FloX v0.1.1 • © 2006 Sven Anderson <sven(at)anderson.de>

2006-07-17 18:33:00 2006-07-17 18:45:00

Figure 4.7: Aggregated flows for each destination IP address with a selected source
IP address.

has been selected and all operations only apply to a subset of flows, the value is

shown next to the flow key, in this case ip_src. Now the destination IP address

is chosen by clicking on the ip_dst flow key. Again, after calculation the result is

shown in the Summation Ranking. As predicted, there are not a lot of different

destinations. In fact all traffic went to a single destination. Although technically

not necessary, since it does not further reduce the flow subspace, we again select

the destination IP address as a fixed value to retain that property of the peak

traffic.

In figure 4.8 it can be seen that again the fixed values are shown next to the flow

key names. Now that we know that the peak was caused by 1:1 traffic between

just two hosts, it is interesting to find out what kind of traffic it was. Therefore the

source port flow key is selected by clicking on port_src. This time the result shows

that the traffic is not bound to a single value but is distributed on packets mainly

coming from two ports. These ports have arbitrary high numbers, therefore no
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FloX

Tables

uplink1  uplink2  uplink3

Flow Keys

agent_id  class_id  mac_src  mac_dst  vlan  ip_src: 192.168.166.209  ip_dst:

192.168.27.5  port_src  port_dst  ip_proto  tos  stamp_inserted  stamp_updated

(click on key to calculate the summation ranking for that key)

Settings

Time Interval: stamp_inserted from  to  

Ranking Length: 10               Order Counter: bytes  

SQL Conditions:  (will be added to the WHERE clause) 

update

Summation Ranking

port_src bytes packets sessions

25929 2210708388 1475887 1 select

11190 2208700708 1474651 1 select

15270 39989144 26806 1 select

59471 38036648 25544 1 select

21 5660 71 7 select

48120 383 4 1 select

FloX v0.1.1 • © 2006 Sven Anderson <sven(at)anderson.de>
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Figure 4.8: Aggregated flows for each source port with a selected destination and
source IP address.

conclusions can be drawn from them. However, in the results a small amount of

traffic coming from port 21 can be seen. This gives an important hint, since 21 is the

port number for the control plane communication of the File Transfer Protocol (FTP)

[RFC 959]. Unlike many other protocols, for FTP the control and user data planes

are separated into different TCP connections. Therefore the actual file transfers

happen over connections with arbitrary ports that are initially negotiated in the

control plane.

At this point we know already much about the origin of the peak: an FTP client

at IP address 192.168.27.5 transferred four files from an FTP server at IP address

192.168.166.209. Two files were about 2.2 GB and two about 40 MB in size. The rest

of the connections are either directory lists or small files. This is confirmed by the re-
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FloX

Tables

uplink1  uplink2  uplink3

Flow Keys

agent_id  class_id  mac_src  mac_dst  vlan  ip_src: 192.168.166.209  ip_dst:

192.168.27.5  port_src  port_dst  ip_proto  tos  stamp_inserted  stamp_updated

(click on key to calculate the summation ranking for that key)

Settings

Time Interval: stamp_inserted from  to  

Ranking Length: 10               Order Counter: bytes  

SQL Conditions:  (will be added to the WHERE clause) 

update

Summation Ranking

port_dst bytes packets sessions

41750 2210708388 1475887 1 select

41769 2208700708 1474651 1 select

41766 39989144 26806 1 select

41733 38036648 25544 1 select

41765 1205 15 1 select

41732 1203 15 1 select

41749 1128 14 2 select

41768 1078 13 2 select

41751 1046 14 1 select

41752 383 4 1 select

FloX v0.1.1 • © 2006 Sven Anderson <sven(at)anderson.de>
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Figure 4.9: Aggregated flows for each destination port with a selected destination
and source IP address.

sults of figure 4.9, where the distribution of the destination port port_dst is analyzed.

All ports are close to each other, which is typical for a client program requesting

several outgoing TCP sockets from the operating system.

This example shows how it is possible to analyze the nature of a sudden network

traffic peak with FloX in a few steps. Of course there are more complicated cases,

but the general proceeding stays the same. And even in cases where it is not possible

to identify any flow key based properties, this in itself is a possibly important infor-

mation about the traffic and might allow further conclusions.
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4.6 Similar Tools

There are many tools to analyze flow based traffic data, such the popular FlowScan

software package of the CAIDA project [Plonka 2000], which makes use of other

tools like cflowd and RRDtool. However, they are not interactive, but have to

be configured in advance to extract the information of interest from the flow

records.

The only freely available tool that has a kind of interactive »drill-down« analysis

capability is the Netpy tool [Estan and Magin 2005]. But it uses sampling and its

own database and therefore is limited in its applicability.

Besides this, all these tools are specific NetFlow tools and therefore only can handle

the flow record formats that NetFlow supports. In contrast, FloX is flexible regarding

the defined flow keys and can also handle flow records from flexible template based

concepts like IPFIX.

4.7 Chapter Summary

In this chapter we presented a simple but very effective tool for the interactive

analysis of flow records. Its main purpose is to »dig« into the components of special

traffic events like peaks and surface as much as possible about how the flows look

like that are responsible for the main traffic during that event.

For that purpose the user repeatedly chooses flow keys and the most interesting

values from top N rankings in an iterative process, so that step by step more

properties of the flows causing the event are determined.

We demonstrated with an example how a traffic peak could be traced back in

only three iterations to FTP file transfers of four large files between two specific

hosts.
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Chapter 5

Distributed Monitoring of VoIP Traffic: SIPFIX

5.1 Motivation

The deployment of Voice-over-IP (VoIP) telephony is increasing fast. Not only are

there more and more telephony service providers operating over the Internet and

offering free VoIP-to-VoIP calls and cheap rates to PSTN telephones. The future

telephony core networks, also known as Next-Generation-Networks, will be IP based

as well, for example the mobile phone network defined by the 3rd Generation

Partnership Project (3GPP) including the IP Multimedia Subsystem (IMS). Access

providers also started to replace their classic analog and ISDN telephone lines with

VoIP based products operating over broadband network technologies such as DSL

or cable Internet.

So obviously the need for monitoring solutions for VoIP technologies is increasing as

well. Coming from the perspective of a classical circuit-switched telephone network,

VoIP brings many new possibilities and improvements, but also a multitude of new

risks and challenges. While VoIP itself is part of the application layer it inherits

all the properties of the packet switched IP network it is based on, like uncertain

bandwidth, variable latency, changing routes and so on. Also has the user direct

access to the transport layer, which increases the attack surface of the system

security. So, in addition to the classical telephony monitoring needs for billing

and the observation of the system-load, performance and operation-faults, there

is the need to monitor many other features, which are necessary to measure the

Quality-of-Service, verify call integrity or to detect harmful events like billing fraud,
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Spam-over-IP-Telephony (SPIT), malicious rerouting, interception, manipulation

and media injection, to name a few.

Also the borders between VoIP and similar applications like video telephony, media

distribution and even instant messaging and email are getting more and more

blurred, since the used technologies are constantly extended to support further

application types. For example SIP, mainly used for media stream sessions, is being

extended to support instant messaging with an extension called SIMPLE, while

XMPP, mainly used for instant messaging, is just being extended with Jingle, which

manages multimedia sessions in order to support voice and video chat. Obviously

the trend goes towards rich signaling protocols, that manage contact relations

between users and support real-time and off-line communication in different ways:

store and forward (like email), publish-subscribe (presence lists), hop-to-hop (like

instant messaging) and setup of direct end-to-end media stream sessions (audio

and video telephony, media streaming, white-board). Which paths the different

kinds of communication take, whether signaling or content, is difficult to predict

and may vary significantly.

This means that monitoring demands get broader and more complex with time,

and so do the demands for a versatile and distributed solution able to support all

these applications and open to constantly grow with them. But current monitoring

schemes are either flexible and distributed ones, but designed for the monitoring of

just the transport layer independently of the application layer, or they are application

layer specific but static and monolithic, mainly based on APIs or log-file analysis

of specific a server software. The latter ones cannot master the complexity of the

aforementioned patterns of modern communication systems.

Therefore, a promising approach is to take an existing distributed monitoring

scheme for the transport layer and extend it with components that do application

layer analysis for specific application protocols and data structures that are able

to keep and transport the extracted information. This results in a cross-protocol

monitoring system, that is flexible, distributed and scalable in order to scope with

the increasing complexity of the communication protocols.

In this chapter, based on the work in [Anderson et al. 2009], we will follow this
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approach for the widely used Session-Initiation-Protocol (SIP). Because of its broad

deployment and since it is part of other standards like the aforementioned IMS of

the 3GPP mobile phone network, it can be regarded as the most important among

similar protocols. But of course the principles of this concept can easily be adapted

to similar protocols like H.323, IAX or XMPP/Jingle.

First we will describe the specific problems of SIP monitoring and the resulting

requirements for the monitoring scheme. Then we will shortly introduce IPFIX

and the Mediator concept the scheme is based on. We will define new IPFIX

Information Elements and Flow Types, which build the core of SIPFIX, describe the

necessary and optional device extensions, and recommend the use of certain IPFIX

optimizations. In the end we will present a series of use case examples and address

some implementation issues.

5.2 Problem Description

Monitoring the various features of SIP traffic and its corresponding media

streams as well as measuring related performance metrics bring up several chal-

lenges.

SIP is foremost a signaling protocol, and as such organizes the session of a number

of media streams. Contrary to these streams, the SIP communication normally does

not happen directly between the peers that want to communicate, but is relayed

over SIP servers, Session Border Controllers and Proxies, and can be redirected

many times before reaching the peer. As the media streams usually do not take the

same paths as the SIP packets, one can not assume that there is a single measuring

point, where all the traffic belonging to one session can be seen. Therefore a

monitoring scheme for SIP has to support the possibility to do measurements at

different locations and correlate these measurements.

Another problem is that – similar to data connections of the FTP protocol – the

format of the media streams are not SIP specific at all, but usually general RTP

streams, for instance. It is therefore impossible to tell just from the media stream

to which SIP session it belongs to, not even if it belongs to a SIP session at all.
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Accordingly, to identify them as part of a SIP session and relate them to the correct

one is only possible, if the session description is extracted from the content of

the SIP packets and matched against the observed media streams. So, at least the

information about either the session description or the media stream has to be

exported to another device before they can be matched.

The next problem is that the device observing the media streams has no clue at

which other device the corresponding SIP packets might get observed, to which

it could send the stream information. The SIP observing device has at least the

session descriptions, but since these usually just include information about the

destination of the media streams, this is probably still not enough to tell for sure,

where the media stream will be observed. This is even true if knowledge about

the network topology is presumed, what again is hardly feasible for a monitoring

device.

Similar problems arise for other measurements, for example the one-way-delay of

media streams from one measuring point to another. For its calculation time-

stamps of certain selected media packets are recorded and need to be compared.

As these measurements are performed at different devices, they have to be sent to

a third device where the actual delay between the two measurement points can be

calculated.

What hence is necessary is a monitoring architecture, which sup-

ports

I a distributed traffic observation,

I the export of the observed information in regular intervals, and

I an efficient convergence of mutually depending data.

It has to be guaranteed that even without knowledge by the involved devices

about the topology the corresponding data will eventually and as early as possible

converge at a single device that performs the matching or calculations on this data

derived from different probes.
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5.3 Solution Building Blocks

Nowadays, general network monitoring is usually done by observing the traffic as

flows. Flows consist of packets sharing the same properties. While these properties

are typically source, destination and protocol type, they can be any set of packet

properties in general. For each observed flow certain counters are maintained,

like the number of packets, bytes or transport layer sessions. These counters are

stored in regular intervals with the according flow property values. As flows are

a widespread concept, there are many advantages in building a solution based

on a flow monitoring architecture which supports the requirements of section 5.2.

This way it will be easier to make use of synergies with existing general purpose

monitoring infrastructures. It will reduce efforts and costs for implementations as

well as deployments, since existing code and existing infrastructures can be used,

and only the necessary application specific extensions have to be implemented and

installed.

5.3.1 IPFIX

IPFIX (IP Flow Information eXchange) is a new set of IETF standards, mainly a

protocol [RFC 5101] and an information model [RFC 5102], that defines the transport

and storage of general IP flow information. IPFIX offers a distributed, efficient and

extensible monitoring architecture.

The IPFIX protocol is based on the latest version of Cisco’s NetFlow protocol (v9).

NetFlow until now is the most common protocol for flow information exchange.

It can be expected that IPFIX will soon be supported by most flow monitoring

hardware and software, since due to the similarities the cost of adaptation is quite

small, and thereupon replace NetFlow. This makes IPFIX a very promising base for

our SIP monitoring scheme, since it has a distributed architecture and will already

be deployed in many networks independently.

In IPFIX, the traffic observation is handled by IPFIX Devices, which comprise

Metering Processes that obtain the flow information from direct network observation,

and an Exporting Process that prepares, schedules and manages the export of this
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data to one or more receivers as Flow Records. They contain the observed flow

information for a certain period of time, that is the values of the common packet

properties, called Flow Keys, and the counters. The receiver of the Flow Records is

called Collector, which is responsible for centrally processing and storing the flow

information. (Fig. 5.1)

IPFIX supports flexible flow definitions while still having an efficient data transport.

This is achieved by using a compact data structure in Flow Records which consists

of lists of binary encoded values without any separators. In order to be able

to decode these structures, they have to be defined by Template Records, which

describe the order, type and size of each field for certain types of Flow Records.

They have to be sent to the Collector before the corresponding Flow Records.

The type of a field is given by Information Elements (IE), that are descriptions

of the possible fields in Flow Records, like for example sourceIPv4Address,

destinationIPv4Address, protocolIdentifier or tcpSourcePort. A

simple template can look like:

<sourceIPv4Address, destinationIPv4Address, octetDelta-

Count>

Besides a base set, that is defined in the information model, IPFIX supports the

definition of new IEs. This is an important feature we will make use of in our

scheme, since it enables us to define the IEs necessary for the transport of SIP

specific or related information.

5.3.2 Mediators

The original architecture of IPFIX comprises IPFIX Devices including Exporters that

send out the flow information, and Collectors that directly receive it. Assuming that

one Collector is assigned for a certain network segment to which all the Exporters

send their data, this architecture obviously does not scale with a network that grows,

either by size or by bandwidth. For large networks this concept is not feasible,

because the Collector itself or its network link cannot handle the load anymore.

This would result in either being forced to reduce the amount of information that

is exported by the IPFIX devices or installing more Collectors that are assigned
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to segments of the network, which spoils the advantage of having a central data

collection.

In order to cope with this problem, the concept of a Mediator is currently being

developed by the IPFIX working group in several document drafts [Kobayashi

et al. 2008a, b]. A Mediator is basically a device which incorporates both a Col-

lecting Process and an Exporting Process together with optional Intermediate

Processes. It receives Flow Records from IPFIX devices or other Mediators and

can process the data in a number of different ways, such as data reduction by

aggregation or filtering, data correlation and combination from different devices,

data modification (anonymization for instance), and data storage in distributed

repositories. The processed data is exported to a Collector or another Mediator.

(Fig. 5.1)

So, Mediators implement a trade-off, distributing the processing and storage needs

of fine grained data, while the Collector still receives the amount of data it can

handle.

As we will show in the use case examples in section 5.8, Mediators play a partic-

ularly important role in our scheme. In many cases data is observed at different

probes and has to be correlated in some way. This can be done by Mediators

that avoid that all these correlations have to be done in a single central Collector.

Since most of the data that has to be correlated is expected to be observed topo-

logically close to each other, distributed Mediators can process the data close to

the observation point and thereby distribute most of the workload as much as

possible.

Also, in some cases very fine grained and timely data is necessary in order to

calculate secondary values and/or metrics. This can produce enormous rates of

Flow Records that will easily overload a Collector for larger networks. Mediators

preprocess that data, export only selected events and information to the Collector

and optionally store the fine grained data in a distributed way in local databases

for later access.

Although Mediators increase the complexity of the monitoring management and

are additional points of failure, they make it feasible to process all the necessary
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data of the different use cases in a scalable and efficient way. Therefore the number

of Mediators should be in a balance between minimal complexity and the necessary

processing distribution.
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Figure 5.1: Showcase scenario for SIPFIX.

5.4 New Information Element Definitions

In this section we will extend the set of Information Elements of IPFIX, in order to be

able to send SIP and media stream related information to Mediators and Collectors.

IPFIX supports this either by defining enterprise-specific IEs or by registering new

IEs at the IANA registry [RFC 5102]. The new IPFIX IEs we will introduce are either

mandatory for the operation of SIPFIX or optional and exemplary, showcasing the

possible functionality and feature extensions.
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5.4.1 SIP

The following IEs contain information gathered from the header of SIP packets,

that is either the first line, called request-line for SIP requests and status-line for

SIP responses, or any of the SIP header fields.

sipFrom: a string of variable length that contains the value of the From: header

field of a SIP packet. It consists of the caller’s SIP URI and optionally its

display name.

sipTo: a string of variable length that contains the value of the To: header field

of a SIP packet. It consists of the callee’s SIP URI and optionally its display

name.

sipCallId: a string of variable length that contains the value of the CallID: header

field of a SIP packet. It is an arbitrary unique identifier.

These three IEs are mandatory and essential for the architecture, as they are used

in data definitions in section 5.5. Together, as a triple, they uniquely identify the

dialogs of SIP sessions and are frequently used as unique identifier throughout

this scheme. Therefore, we will refer to the IE set <sipFrom, sipTo, sipCal-

lId> also as sipDialogId, although it is not a real IE but simplifies descrip-

tions.

The following exemplary IEs might be necessary to realize certain functionalities

but are not essential for the operation of the basic framework of SIPFIX. Therefore

the following list should be seen as a showcase selection:

sipRequestMethod: a string of variable length that contains the the first element

of the request-line of a SIP request packet. This is the method or type of the

SIP request, like for example »INVITE«, »REGISTER«, »CANCEL«, »BYE«

or »ACK«. Of course it can also contain request types of the various SIP

extensions like »SUBSCRIBE« and »NOTIFY« [RFC 3265].

sipRequestURI: a string of variable length that contains the second element

of the request-line of a SIP request packet. This is the request-URI like for

example »sip:bob@example.com«.

sip:bob@example.com
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sipResponseStatus: an integer that contains the second element of the status-

line of a SIP response. This is the numerical status code like »200« for OK or

»400« for a bad request.

sipVersion: a string of variable length that contains either the third element of a

request-line or the first element of a status-line of a SIP request or response,

respectively. This is the SIP version, like »SIP/2.0«.

5.4.2 Media

The IEs in this section describe specific properties of media streams related to a SIP

session. This information is either gathered from media descriptions in the content

of SIP packets, which is usually formatted with the Session Description Protocol

(SDP), or from directly observed media packets.

sipMediaId: an integer that uniquely identifies a media stream description of

a SIP dialog. The media IDs should be assigned in the same order as the

corresponding media descriptions in the session description. But nevertheless

they are only guaranteed to be constant for a certain media stream descrip-

tion in the scope of a single Exporting Process. A second metering device

monitoring the same SIP packets could possibly give the same media stream

description a different media ID. One of the purposes of this Information

Element is labeling special pseudo flows called Media Flow Descriptors, defined

in section 5.5.3, which is why this is a mandatory Information Element for

this scheme.

sipMediaProtocol: a string of variable length that contains the transport proto-

col from a media stream description. Usually this is extracted from the media

descriptions in the SDP data. A typical value is »RTP/AVP«.

sipMediaType: a string of variable length that contains the media type from a me-

dia stream description. Usually this is extracted from the media descriptions

in the SDP data. Typical values are »audio« and »video«.
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sipMediaEncoding: a string of variable length that contains the encoding name

from a media stream description. Usually this is extracted from the media

descriptions in the SDP data. Typical values are »GSM«, »PCMU«, »G722« or

»H261«.

rtpPayloadType: an integer that contains the RTP payload type number. This is

either extracted from media descriptions or from observed RTP packets. If it is

in the range from 0 to 95 it may refer to static payload type assignments, like

0 for PCMU or 3 for GSM, but in general it refers to dynamical assignments

in media descriptions. This means that payload types from RTP streams are

of no use without the information from the corresponding media description.

5.4.3 Performance Metrics

For Quality-of-Service or performance monitoring the knowledge about certain

metrics is necessary. For SIP applications, this can be either metrics of the signaling

performance of SIP or metrics regarding the performance of the related media

streams. There are many possible and useful metrics ([Malas 2007], [ITU-T Y.1530]),

but it is out of the scope of this work to map a comprehensive metrics list to IEs. In

the following we will just define exemplary media metrics that are important for

the showcase applications we will describe in section 5.8.

mediaPacketLoss: a floating point value that contains the ratio of lost packets to

total packets during the observation period of the corresponding flow record.

mediaDelay{To,From}Terminal: an integer that contains the one way delay in

milliseconds from a media gateway to the terminal (To) and vice versa (From)

for the corresponding flow record. This can be measured passively by media

stream observation or actively estimated, with loop-back calls or ping, for

example.

mediaDelayMGW: an integer that contains the one way delay in milliseconds from

the ingress media gateway to the egress media gateway for the corresponding

flow record. This is usually not measured directly but calculated based on

other measurements.
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Figure 5.2: Dependencies of SIP Flows and Media Flow Descriptors.

rtpJitter: an integer that contains the inter-arrival jitter as defined by the RTP

specification [RFC 3550].

5.5 Flow Type Definitions

In order to transmit the information about SIP sessions and their related media

streams, our SIP monitoring scheme defines a set of special Flows. These Flows

have constraints to make sure that the data can be correctly correlated by a Mediator

or Collector afterwards.

5.5.1 SIP Flow

A SIP Flow is a normal Flow of SIP packets, but in addition to the normal fields it

must include fields with the Information Elements <sipFrom,sipTo,sipCal-

lId> which represent the sipDialogId. Therefore the SIP headers have to be

parsed. SIP Flow fields may include any number of SIP specific IEs such as those

described in section 5.4.1. (Fig. 5.2)
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5.5.2 Media Flow

A Media Flow is a normal Flow of media packets. There are no mandatory fields,

as these Flows may also be exported by standard IPFIX devices not extended

for SIP related monitoring and unaware of the packet content. However, for

applications based on media-specific information, like metrics for performance and

QoS monitoring, the media probe can gather this information and export it in the

Media Flow with media-specific IEs such as from section 5.4.3.

5.5.3 Media Flow Descriptor

The media streams of SIP sessions are defined by media descriptions in the content

of SIP packets. This data cannot be exported as normal fields of SIP Flows, as there

can be an arbitrary number of media streams described in one single SIP packet.

Therefore we define the Media Flow Descriptor, which is not a real Flow based on

measured packet properties, but a pseudo Flow that describes an expected Media

Flow based on media descriptions contained in SIP packets, which is usually an

SDP description. (Fig. 5.2) It must include the sipDialogId IEs as a reference

to the corresponding SIP dialog as well as the sipMediaId as a reference to the

corresponding media stream.

A Media Flow Descriptor must be specified by an Option Template Record and

the sipMediaId must be included as a scope field. As it is not a measured Flow

it must not contain any kind of counter fields like number of packets or bytes.

The sipMediaId as scope identifies the Flow as a Media Flow Descriptor and

is not allowed as scope of other Flows. If there are several possible variations of

an expected Media Flow – for example a sipMediaEncoding field is used and

there are a number of possible encodings – all the variations can be exported in

separate Flow Records with the same sipMediaId value indicating that they are

all alternatives of the same Media Flow. Besides standard Information Elements,

the additional fields of a Media Flow Descriptor typically are based on media

descriptions such as from section 5.4.2.
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5.6 Extended Device Functionalities

SIPFIX is completely based on the IPFIX standard, so any IPFIX compatible software

or device can receive and process the data in a general way. However, in order

to obtain the necessary information for the values of the new defined IEs, or to

process the data about the SIP sessions in a specific way – for example correlation

of signaling and media Flows, security checks or calculation of Quality-of-Service

measures – the IPFIX devices require extended functionalities. This section describes

the necessary and possible extensions depending on the type of device and its role

in the whole monitoring system.

5.6.1 IPFIX Device

An IPFIX Device can either be a dedicated probe, a forwarding device like a

router or proxy or even a terminal device. If it is assigned to export SIP Flows

it has to obtain at least the information needed for the sipDialogId, that is

sipFrom, sipTo and sipCallId. Therefore the IPFIX Device has to be extended

by a SIP parser to extract all the fields based on the SIP headers as described in

section 5.4.1.

An IPFIX Device that is assigned to export Media Flow Descriptors must addition-

ally be able to obtain the media descriptions from the content of the SIP packets as

described in section 5.4.2. Nowadays this most probably means it has to be extended

by an SDP parser to extract the according information.

An IPFIX Device that is assigned to export Media Flows has no requirement for

extensions in general, as there are no mandatory IEs for Media Flows. Neverthe-

less, it might be necessary to implement extensions for certain applications. For

instance, an RTP parser will be necessary for any IEs that depend on RTP, such as

rtpPayloadType or rtpJitter.

Besides those basic extensions, there are a variety of other possible probe exten-

sions.
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For Quality-of-Service monitoring the IPFIX Device can gather performance metrics

either from the SIP signaling itself or from the Media Flows, such as the examples

from section 5.4.3.

If the related SIP packets are not observable, like at media gateways, and for

example RTP performance metrics have to be calculated, it might be necessary to

have a component that is able to identify Media Flows just by packet inspection

and without any signaling information. This of course is a nontrivial task and can

be very expensive in terms of processing power.

As an alternative, if it is not feasible to identify media streams in real-time, there can

be a media probe component that is able to directly receive Media Flow Descriptors

from an associated SIP probe in order to identify arbitrary streams as media streams.

However, this requires some knowledge about the topology by the SIP probe, which

has to export the Media Flow Descriptors to the correct media probes. (See left

bottom of Fig. 5.1)

5.6.2 Mediators

Mediators have the task to preprocess and/or store the Flow data coming from

Exporters before sending them to central Collectors, which decentralizes the pro-

cessing time and data storage and reduces the used bandwidth at the Collector in

order to avoid scalability issues. Besides general processing of the IPFIX data, a

Mediator can be extended to do specific processing of SIP related data. Among

others this can be:

I Calculation of metrics based on values that derive from different probes.

For example, the IE mediaDelayMGW is based on time-stamps of a packet

observed at different media gateways.

I Correlation of SIP Flows with Media Flows by Media Flow Descriptors. This

can be useful for adding the sipDialogId to Media Flows or to media-based

QoS metrics and for calculating the total counters for SIP Flows and their

related Media Flows.



82 5. Distributed Monitoring of VoIP Traffic: SIPFIX

I Selection of information that has to be forwarded to the upper next Mediator

in the IPFIX hierarchy. For example, if packet time-stamps are only used for

the calculation of mediaDelayMGW, they are forwarded until a Mediator or

Collector is reached that received the time-stamps from both the ingress and

the egress media gateway and therefore is able to calculate the delay.

5.6.3 Collectors

Possible extensions of Collectors are general calculation and correlation of data like

in Mediators, as long as they are not specific for the export functionality. Addition-

ally, as the Collector is the end of the IPFIX cascade, it is responsible for the final

processing, analyzing and archiving of the received data. This ranges from storing

compact call records to a real-time display of ongoing calls.

5.7 Recommended IPFIX Extensions

In the following section we will propose the use of two existing IPFIX extensions that

optimize the export of the Flow Types in section 5.5. Although not strictly necessary,

they are highly recommended, as they improve efficiency and functionality of

SIPFIX.

5.7.1 Bidirectional Flows

RFC 5103 [RFC 5103] defines a method to export associated bidirectional Flows

(Biflows) in a single Flow Record. Two Flows combine to a Biflow, if all non-

directional fields directly match, and all source-related fields match the correspond-

ing destination-related field of the other Flow. The Flows are merged by adding

special IEs for counter fields of the »reverse« direction from the destination to the

source.

This has several advantages: In most cases it is more efficient to assemble Biflows

at the measuring device than in a Collector. Also, Biflows share much information,
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so exporting them as individual Flows creates a large amount of redundant data.

But the most important advantage for SIP monitoring is that exporting as Biflows

keeps a directional information which otherwise can get lost. For example, if a SIP

Flow has the Flow Keys <sourceIPv4Address, destinationIPv4Address,

sipFrom, sipTo, sipCallId>, it is impossible to tell if this Flow represents

packets sent by the caller or the callee, as the sipFrom and sipTo fields are the

same for both directions. If Biflows are used, the source and destination fields are

the same for both directions as well and can be associated with the sipFrom and

sipTo fields by Direction Assignment.

That is, by using Biflows the SIP Flows of the requests and the responses can be

merged in a way that the normal counter fields will refer to the SIP requests, while

reverse-counters will refer to the SIP response packets.

5.7.2 Common Properties

If different Flow Records share some properties, that is certain fields have the same

values, normally this data is repeated in each single exported Flow Record. This

leads to a large amount of redundant data that is being transmitted and wastes

bandwidth. Therefore, [RFC 5473] describes a method to reduce the used band-

width of IPFIX exports by reducing that redundant data. It introduces the special

IE commonPropertiesID, which acts as an identifier for an arbitrary set of field

values. So in case of many Flow Records sharing several field values, a unique com-

monPropertiesID can be assigned to this common set of values in advance. This

ID replaces the respective set of values in all the following Flow Records, which are

called Specific Properties Data Records in this case. The assignment is accomplished

by exporting Flows defined by a Options Template with commonPropertiesID as

scope, called Common Properties Data Records.

SIPFIX can extensively make use of this method. Foremost the set of IEs called

sipDialogId described in section 5.4.1 is often used as an identifier throughout

this scheme and is even mandatory for SIP Flows and Media Flow Descriptors.

Therefore, it is advisable to define an Options Template <commonPropertiesID

| sipFrom, sipTo, sipCallId> in order to assign a commonPropertiesID
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to each exported sipDialogId in a Common Properties Data Record, which is

used in all SIP Flows, Media Flow Descriptors and other Flows that contain the

sipDialogId. Also, if export of SIP Flows is frequently triggered for timely

status updates – for example to keep track of the call state via Information Ele-

ments like sipRequestMethod and sipResponseStatus – this results in a lot

of small, or even single-packet Flows, which share all fields that are static per

session as common properties. Instead of exporting the complete Flows every

time, these »status updates« can be reduced to small exports like <commonProp-

ertiesID, sipRequestMethod, sipResponseStatus>, where the common-

PropertiesID represents all the session-static information.

5.8 Use Case Examples

In the following section we will describe some showcase scenarios as possible

applications of SIPFIX. They will show the advantages and flexibility of the modular

and decentralized architecture of this monitoring framework in order to solve

common problems of distributed traffic measurement.

5.8.1 Separate SIP and Media Flows

As SIP is a signaling protocol for setting up media streams, it is very common that

the network path of SIP packets is different from the path of media flows. This is

due to the fact that the media stream is often set up peer-to-peer, while the SIP

communication usually operates over SIP servers at which the users are registered.

Furthermore, network operators usually separate the control plane (SIP) from the

user data plane (media) by the use of Session-Border-Controllers (SBC), which

act as SIP proxies, and dedicated media gateways, which are responsible for the

forwarding of the media streams, making it impossible to monitor the whole SIP

session at one observation point.

SIPFIX solves this problem by moving the correlation of SIP and Media Flows

out of the probe into a Mediator. The SIP probe analyzes the content of the SIP
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requests, obtains the information about the possible Media Flows for each session

and exports them as Media Flow Descriptors to the first Mediator, while other

probes observe Media Flows. As early as both the Media Flow Descriptors and the

according Media Flow records are received by the same Mediator, the Media Flows

can be matched against the observed SIP Flows. The Mediator can then accomplish

the same analysis and processing on that data as if a single probe observes both the

SIP and media packets.

In a typical situation, the SIP and media probes can be assumed to be network-

topologically close. Therefore it is likely that the first Mediator in the IPFIX-

forwarding cascade is already the one that can correlate the media with the SIP

session. This is beneficial in terms of scalability, as the processing of the data

happens close to the source and therefore is well distributed over the infrastructure.

Hence, as the network structure grows, additional Mediators can compensate

increasing processing needs.

5.8.2 Asymmetric Routing

In case of asymmetric routing the situation can occur, that one probe only sees

the SIP requests, while another sees the related SIP responses. In such a case,

for instance, it is not possible for a single probe to track the session state for

monitoring applications that depend on it, or to calculate the total traffic amount

per session.

With our scheme this is still possible if at least both directions are monitored

somewhere in the whole monitoring domain. While the unidirectional SIP Flows

are forwarded from Mediator to Mediator towards a central Collector, the related

SIP Flows will eventually end up in the same Mediator, which can relate them or

merge them into one single Biflow.

If the SIP Flows are exported in Biflows in this scenario, the counters for one

direction stay empty, which might make it look unnecessary to use Biflows in

this case. But still using Biflows has the advantage that it provides the additional

information, if the SIP Flow contains requests or responses.
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Figure 5.3: Data flow diagram for MOS calculation.

5.8.3 Quality-of-Service Monitoring

QoS monitoring is usually an important issue for VoIP providers and operators,

in order to assure the compliance with service-level-agreements or to monitor the

performance of the infrastructure for upgrade planning. But in this wide field

of measures and metrics, it is difficult to handle it in a general way. Also, the

necessary metrics may derive from very different points in the network, which

makes it necessary to manage that data remotely in an efficient and scalable

way.

SIPFIX supports this approach. New metrics can easily be introduced by the

definition of new IEs. And because of the distributed tree-structure of a Mediator-

based IPFIX monitoring architecture, the metrics can be collected from any place

and still be processed as decentralized and scalable as possible.

As an example, we will outline the assessment of a Mean-Opinion-Score (MOS)

based on the E-Model[ITU-T G.107], which gives an estimate of the expected call

quality of a media stream based on the network parameters one-way-delay (OWD)

and packet loss rate together with the used codec of the voice media stream. We
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assume the SIP and media traffic is observed separately.

In Fig. 5.3 you can see, how these required values are obtained from the

probes.

The media codec is determined by matching the rtpPayloadType observed in

the media streams against the rtpPayloadType and sipMediaEncoding pairs

in the Media Flow Descriptors exported by the SIP probe. If the rtpPayloadType

refers to a predefined RTP media profile, in which the codec is defined, the export

of sipMediaEncoding is not necessary.

The mediaPacketLoss is measured and exported by the egress media gateway of

a media stream.

The last missing parameter to calculate the MOS estimate – the end-to-end one-

way-delay – can be calculated piecewise. We assume that the media gateways

can somehow measure the delay to and from the terminal, or at least estimate

it with pings or loop-back calls, for example. These values are exported for

a Media Flow with the field mediaDelayFromTerminal by the ingress, and

mediaDelayToTerminal by the egress gateway.

In addition, all media gateways deterministically sample certain packets of Media

Flows in order to export their values digestHashValue and observation-

TimeMiliseconds. With these values for the same packet from both the ingress

and egress media gateways the one-way delay between them can be calculated

and exported as mediaDelayMGW. In order to make it reusable for other Me-

dia Flows that have the same ingress and egress media gateways this could

happen with a generic template like <ingressGWIP, egressGWIP, mediaDe-

layMGW>.

Eventually, with all the values mediaDelayFromTerminal, mediaDelayMGW

and mediaDelayToTerminal the overall end-to-end delay of a media stream can

be calculated, and together with the rtpPayloadType, sipMediaEncoding and

mediaPacketLoss the according MOS value.

All the calculations and correlations from this example can be flexibly distributed

over different Mediators in different hierarchy levels.
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5.8.4 Security Inspections

Now we will describe some examples how SIPFIX can help apply security con-

straints or detect anomalies and possible threats.

5.8.4.1 Spoofed Media Sender

Most SIP devices currently do not focus on the security of media-streams. They

expect packets to arrive at a certain IP address and port but normally do not inspect

the origin. This makes it easy for an attacker to inject media packets in order to

take over or disturb the media stream.

If the network is supervised by a SIPFIX infrastructure, this attack would lead to

two different Media Flows which both match the same Media Flow Descriptor of

a SIP session. This inconsistency can easily be detected by a receiving Mediator,

and alarms or counter-measures can be triggered. Even in more sophisticated cases,

when the attacker spoofs the IP address of the media source, it still might be possible

to detect the fraud. For example, if there are Media Flow Records of the same media

stream being received at the same time from different Observation Domains, which

topologically cannot be on one path, like three different edge-nodes, for instance, it

can be detected as an anomaly and further investigated.

5.8.4.2 Stateful Cross-Protocol IDS

Previous work on VoIP Intrusion Detection Systems proposes analyzing the traffic

across different protocol levels and tracking their states [Wu et al. 2004]. SIPFIX

fully supports that approach. Mediators can track the states of SIP sessions by

the information they receive in SIP Flow Records, and correlate them with infor-

mation from other protocol levels like TCP. So information about the SIP session

and its media streams can provide an additional layer for a cross-protocol IDS

architecture.



5.8. Use Case Examples 89

5.8.4.3 DoS Detection and Prevention

Denial-of-Service detection and prevention has been a hot topic recently. It is

generally accepted that it is critical to identify and block the attacks as close to

the source as possible in order to not only protect the attacked entity but also the

resources of the network infrastructure in between. By the distributed architecture

that SIPFIX inherits from IPFIX, it is possible to detect signatures of SIP based

DoS attacks close to the origin, in the best case at the entry point of the observed

network domain.

Many DoS attacks are distributed DoS attacks (DDoS), which means that the origin of

the malicious traffic comes from hundreds or thousands of different systems. While

the traffic of a single system is negligible, the overall traffic sums up to a harmful

amount. To detect that, Mediators and Collectors can sum up the traffic information

from all distributed probes by all or selected destinations and trigger alarms and

countermeasures as soon as certain thresholds are reached. It is obviously not

necessary to have a probe close to the attacked host, which could see the whole

amount of attacking traffic, as the detection is based on distributed measurements

before the harmful traffic merges. Since the Mediators know at which probe the

malicious traffic has been monitored, it can direct the interception as close to the

source as possible.

5.8.5 Real-Time Status Display

A very common request of VoIP operators – as for any network operators – is to see

»what is going on«, that is to have a real-time sketch of which calls are currently

active, in which state they are and how much bandwidth they use, for instance. For

such a live status display, it is necessary that some data is forwarded with short

delay. On the other hand, other data might not be necessary on a real time basis but

only at a later time for archiving purposes. To optimize this, Mediators can select

the Flows, which contain IEs that are necessary for the real-time application, and

export them on a tight schedule, while other flows are locally stored or exported

in longer intervals. For further bandwidth optimization the Mediator can split the
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Flows up into time-critical and non-time-critical IEs. This can be done with the help

of commonPropertiesID, as mentioned in section 5.7.2. Only the time-critical IEs

are fast-forwarded in short Flows then, while the rest is retained for aggregation

and later export.

5.9 Implementation Challenges

An implementation based on the SIPFIX scheme is still in an early state. So far we

focused on the implementation of the efficient packet inspection in IPFIX Devices,

which is one of the major challenges for any application layer inspecting network

measurement. This resulted into RTC-Mon that has been presented by [Fusco et al.

2009] and has been developed in conjunction with SIPFIX in the same research

project. It is an extensible framework for developing high-performance real-time

monitoring applications. This is partly achieved by executing time-critical code in

the kernel space and using specialized device drivers.

However, the gap between network speeds and common cheap memory (DRAM)

will further increase. Since sampling is not an option for most SIP monitoring re-

quirements and in order to scale with the increasing amount of data processing this

will inevitably lead to more expensive measurement solutions, either by connecting

several probes to one observation point or by building high-performance hardware

with fast but expensive memory (SRAM).

5.10 Related Work

There are general distributed monitoring solutions like Cisco’s NetFlow, which op-

erate on the transport and network layer, and SIP monitoring solutions like Sipient’s

SIPFlow, which are designed to monitor single SIP servers. However, still there is

only few work done trying to integrate those two concepts.

There has been some work on using IPFIX for SIP monitoring. In [Lee et al. 2007]

a scheme is presented, which extracts the RTP flow information from SIP packets
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and proposes IPFIX templates for this information and RTP flows. But since these

templates are fixed and are focused on the performance metrics of the RTP flows,

the applicability is very limited. Another implementation, which uses IPFIX for the

transport of a few RTP QoS metrics by defining new IEs is presented in [Øslebø

and Kvittem 2007], but no SIP monitoring is considered here.

In the wider field of VoIP monitoring there is an interesting distributed architecture

outlined in [Acharya et al. 2007]. It consists of SIP classifiers located at SIP proxies,

which export the gathered information to a SIP Transaction Monitor that tracks

the call states. This approach is focusing on SIP itself and does not address the

correlation with media stream monitoring.

The solution presented in [Lindh and Roos 2006] is triggering RTP monitoring by

information gathered from the SIP signaling, but is depending on direct interaction

with the SIP proxy and has not a distributed architecture.

5.11 Chapter Summary

In this chapter we presented SIPFIX, a flexible and distributed scheme for mon-

itoring both the control and user data plane of SIP traffic. It is based on the

general purpose monitoring standard IPFIX, which is expected to have soon a

high acceptance. This again will make deployment of SIPFIX more feasible and

cost-effective. The proposed IPFIX extensions in order to support SIP monitoring

comprise

I new Information Elements for SIP and media related data,

I flow types definitions for SIP traffic, media traffic and media descriptions,

and

I components which process the new data structures.

The use of Mediators helps to distribute the higher processing and bandwidth needs

introduced by the application layer data analysis. In different use case examples we

showed that SIPFIX can cope with many of the typical challenges of SIP monitoring,
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like for example correlation of separated SIP and media flows, end-to-end QoS

monitoring and various security inspections.

But still, SIPFIX is just a framework. An important future work is the defini-

tion and implementation of application-specific SIPFIX profiles in accordance

to the use case examples that maintain interoperability of SIPFIX based compo-

nents.
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Chapter 6

Conclusion

In this chapter we will conclude what we have learned from the work presented in

this dissertation, give a concise summary of the original contributions and a short

outlook.

In this dissertation we addressed open issues in the field of flow-based network

traffic measurements and proposed solutions or improvements for them. (See

figure 6.1.)

Although the importance of the Internet and IP networks for the communicative

and informational life constantly increases, it is becoming more and more difficult

to observe what is happening in the network, because of the increasing bandwidth

of the link technologies, the growing network topology and the resulting vast

amounts of measurement data. In order to handle these amounts of data, it is

important to find better solutions for problems like the analysis and presentation

of data in a human-readable format, the long-term storage of the data and the

scalability of the measurement infrastructure.

The flow data reduction method Mouse Trapping introduced and evaluated in

chapter 3 is based on the observation that only few flows are responsible for most

of the traffic. It can – depending on the traffic mix – reduce the flow data by

about 90% while only information about 5% of the traffic is lost. Since for most

applications a loss is acceptable, this method can improve long-term storage by

removing the small flows after some time. It can also improve the scalability of

measurement infrastructures if applied in mediators that forward the large flows to

the collector.
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Figure 6.1: Diagram of open issues of flow-based network measurements and their
relation to the solutions presented in this work.

The software tool FloX described in chapter 4 solves the analysis and presentation

problem for the case of sudden high traffic events by – similar to Mouse Trapping –

focusing on the large flows of a dynamically selectable subspace of the flow data in

an iterative »drill down« approach.

The wide spread deployment of application layer based server virtualization and

overlay network infrastructures make it useful or even necessary to extend the

measurement technologies to the observation of application layer parameters. The

SIPFIX framework presented in chapter 5 is such an extension for the widely used

SIP protocol on basis of the flow export standard IPFIX. Because of its distributed

structure, SIPFIX is able to monitor SIP sessions including their related media

streams, also for the common case that they take different paths and therefore are

measured at different observation points.
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6.1 Summary of Contributions

The original contributions presented in this dissertation can be summarized as

follows:

Mouse Trapping

1. Evaluation of a reduction method with real traffic measurements that can be

highly effective, depending on the traffic mix.

2. Numerical simulations which show that the method works generally for any

flow data with power-law distributed flow sizes.

3. Examination of the power-law characteristics of real traffic measurements for

various types of traffic.

FloX

1. Design of a concept to examine high traffic events on the basis of large

amounts of flow data in an interactive »drill-down« approach.

2. Implementation of FloX, a proof of concept tool that is freely available as a

open source web application.

SIPFIX

1. Design of a distributed monitoring architecture for SIP networks that includes

the media streams.

2. Extensive description of use case examples for such an architecture.

3. Example of an integrated and distributed measurement infrastructure for both

network and application layer.

4. First extensive use of the extensibility of the new IPFIX internet standard.
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6.2 Outlook

The specific future work has already been mentioned in each of the chapters

summaries. But we will now have some general thoughts about the challenges of

future flow-based network traffic measurement solutions.

The general difference between the increase of speed for network links (SRAM)

and for ordinary, more affordable memory (DRAM) can be expected to continue.

Therefore, without further improvements in the way how measurement data is

processed, monitoring solutions will become more expensive in relation to the net-

work infrastructure, since they need much more memory than a simple forwarding

network device. Hence, efficient methods to reduce the data to concise digests that

contain a maximum of important information, will become even more important

than they are today. They have to be efficient in two ways: the reduction ratio must

be high and at the same time the »density« of informational value must be high as

well.

A problem that the application layer measurement of overlay networks might face is

encryption. It is good practice to use end-to-end encryption in terms of data protec-

tion and user security, but it prevents the extraction of application layer parameters

at the usual observation points of traffic measurement. If peer-to-peer encryption is

used, the only possible observation points are at the end hosts themselves, what is

usually not feasible. However, in cases where the communication passes central

servers and proxies, like normal SIP, for example, these entities are the predestined

observation points.
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